OWZO0V-HnNSID>

<TVO=->IVOWP>Ir

AD-A256 997 —— 4
ATsameer RRERn

FUNCTIONAL REQUIREMENTS OF AN
ADVANCED INSTRUCTIONAL DESIGN ADVISOR:
TASK ANALYSIS AND TROUBLESHOOTING
(VOLUME 2 OF 3)

Martha C. Polson
Peter G. Polson

Institute of Cognitive Science
University of Colorado

Boulder, CO 80309 D .T- i C

S5 UILECTE ¥,
David Kieras & 0CT191992% B

College of Engineering
University of Michigan c
Ann Arbor, Ml 48109

Henry M. Halff

Halff Resources, Incorporated
4918 Thirty-Third Road North
Arlington, VA 22207

Reynold T. Hioki

HUMAN RESOURCES DIRECTORATE
TECHNICAL TRAINING RESEARCH DIVISION
Brooks Air Force Base, TX 78235-5000

Interim Technical Paper for Period March 1990 - February 1991

Approved for public release; distribution is unlimited.

AIR FORCE MATERIEL COMMAND
BROOKS AIR FORCE BASE, TEXAS 78235-5000

& 92-27289
September 1992 TR -

NOTICES

This technical paper is published as received and has not been edited by the
technical editing staff of the Armstrong Laboratory.

When Govemment drawings, specifications, or other data are used for any purpose
other than in connection with a definitely Government-related procurement, the United
States Government incurs no responsibility or any obligation whatsoever. The fact that
the Government may have formulated or in any way supplied the said drawings,
specifications, or other data, is not to be regarded by implication, or otherwise in any
manner construed, as licensing the holder, or any other person or corporation; or as
conveying any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

The Office of Public Affairs has reviewed this paper, and it is releasable to the
National Technical Information Service, where it will be available to the general public,
including foreign nationals.

This paper has been reviewed and is approved for publication.

EYNOLD T. HIOKI HENDRICS W. RUCK, Technical Director

Project Scientist Technical Training Research Division

Chief, Technical Training Research Division

REPORT DOCUMENTATION PAGE

Form Approved

OMB No. 0704-0188

Public reporing burden for this collection of informalion is estimated to average 1 houv per response, including the tme for reviewing instructions, searching
and lnd d the collection Send

an 9 g this burden esamcle or lny other lspect d tms collecuon of
information, lncTudmg estions for red this burd \ Services, Directorate for Information Opx R 1218 . Sune
1204, Arlington, VA ﬁgg u\d to the bﬂice ot Manmment and Budget blperwork Reducbon Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 1992 Interim — March 1990 - February 1991
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
C - F33615-88-C-0003

Functional Requirements of an Advanced instructional Design Advisor: Task | PE - 62205F

Analysis and Troubleshooting (Volume 2 of 3) PR - 1121
6. AUTHOR(S) wu - lg

Martha C. Poison Henry M. Halff B

Peter G. Poison Reynold T. Hioki

David Kieras

T T T T T .,
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute of Cognitive Science College of Engineering Halff Resources, incorporated
University of Colorado University of Michigan 4918 Thirty-Third Road North
Bouider, CO 80309 Ann Arbor, Ml 48109 Arlington, VA 22207

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)
Armstrong Laboratory

Human Resources Directorate

Technical Training Research Division

Brooks Air Force Base, TX 78235-5000

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

AL-TP-1992-0035-Vol-2

11. SUPPLEMENTARY NOTES

Armstrong Laberatory Technical Monitor: Dr. Daniel J. Muraida, (512) 536-2981

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13.ABSTRACT (Maximum 200 words)

computer-based instructional materials is complex and time-consuming.
effectiveness of the process.

part of the knowledge base for the AIDA.

The Advanced Instructional Design Advisor (AIDA) is an R&D project being conducted by the Armstrong
Laboratory Human Resources Directorate and is aimed at producing automated instructional design
guidance for developers of computer-based instructional materials. The process of producing effective

Few experts exist to ensure the

The content of this paper addresses the major implications for instruction based on cognitive and
educational research. Principles such as the ones comtained in this paper would comprise a substantial

14. SUBJECT TERMS

Cognitive psychology Instructional design
Cognitive task analysis Instructional strategies
Educational psychology ISD

15.NUMBER OF PAGES
124

16. PRICE CODE

17. SECURITY CLASSIFICATION [18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION [20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF AﬁﬂTAcT,] uL
Unclassified Unclassified nclassified

NSN 7540-01-280-3500

TABLE OF CONTENTS

Page
I. INTRODUCTION cececaccenasseens ceecesscrneccacancas e 1
IT. AIDA: PROCEDURAL TRAINING csesrsecctesacctcnnnnos P 3

ITII. TASK ANALYSIS IN AIDA 5 |
IV. AUTOMATING MAINTENANCE TRAINING Ceeeeerttereseseanacas 32
V. TEACHING TROUBLESHOOTING PROCEDURES cesscesecsesccsces 64
VI. CONCLUSIONS T T T T T ¥ |
REFERENCES e et cseeeases et et eensas et sscersancscnssscasnccss 98

APPENDIX ® & & & 4 0 0 * P S O 8 O Bt S OO S OO N S SV O S O e e ® OO E s SE eS S s s 105

LIST OF FIGURES
Figure Page
1. A Section of Technical Order 31P1-2FPS85-52 on
Adjusting the Search Processor Power Supplies
in a Phased Array Radar e 1 o

2. An Excerpt from Technical Order 1T-38A-2-6-2 for
Engine Conditioning of the T-38A Aircraft . B |

3. Gross Simplification of the Components Involved
in the No-Start Troubleshooting Procedure seescssesasss 67

4. T-38A No-Start Fault Tree Y
5. Structural Breakdown of the T-38A ceceseresessacas ee.. 78

6. Functional Breakdown of T-38A Engine-Related
Components ® 6 8 & 8 0 9 & 5 5 O OV O OO VS SO eSO OO 0SS e s e e e e e 79

7. Components Involved in the Fuel Flow Branch
of the No-Start Fault Tree P - 1

8. Use of Subtree and Highlighting to Focus
Attention ® & @ @ @ & ¢ & 0 & O 0 P OO S G O D O S S C SO PO S S S e e O e See e e 89

iii

TABLE OF CONTENTS (Continued)

LIST OF TABLES
Table Page

1. Faults Causing No-Start Condition

® 0 ® 000 000 08000000

2. Fault-tree Interpretation Schema ceaens

3. Functionality Tests for Fault Tree Components

iv

70

72

74

PREFACE

The work reported herein was done for the Advanced
Instructional Design Advisor project at the Air Force Armstrong
Laboratory (Human Resources Directorate). The substance of this
research was done under contract to Mei Associates, Inc., the
primary contractor on the Advanced Instructional Design Advisor
(Contract No. F33615-88-C-0003).

This work was done as part of the second phase effort on the
Advanced Instructional Design Advisor. The initial phase of this
project, documented in AL-TP-1991-0014, established the
conceptual framework and functional specifications for the
Advanced Instructional Design Advisor, an automated and
intelligent collection of tools to assist subject matter experts
who have no special training in instructional technology in the
design and development of effective computer-based instructional
materials. This second phase provided the design specifications
for an experimental prototype.

Mei Associates’ final report for the second phase is being
published as an Armstrong Laboratory Technical Report (AL-TR-
1991-0085). In addition, Mei Associates received nine papers
from various consultants working on this phase of the project.
These nine papers have been grouped into 3 sets and edited by
AL/HRTC personnel. They are published as Volumes 1 - 3 of
Functional Requirements of an Advanced Instructional Design

Advisor:

Volume 1: Epitomizing Functions

Volume 2: Task Analysis and Troubleshooting

Volume 3: Simulation Authoring

This is Volume 2 in the series. Capt Reynold T. Hioki wrote
sections I and VI. Drs. Martha C. Polson and Peter C. Polson

wrote section II. Drs. Martha C. Polson and David Kieras wrote
section III. Dr. Henry M. Halff wrote sections IV and V.

IREEET LR |
Wil uniafor ’

Tl REET RN
2C Lt ;

|
!

SUMMARY

The Advanced Instructional Design Advisor is an R & D
project being conducted by the Air Force Armstrong Laboratory
(Human Resources Directorate) in response to an Air Training
Command (ATC) Manpower, Personnel, and Training Need calling for
improved guidelines for authoring computer-based instruction
(CBI) (MPTN 89-14T).

Aggravating the expensive and time-consuming process of CBI
development is the lack of Air Force personnel who are well-
trained in the areas of instructional technology and educational
psychology. More often than not, a subject matter expert with
little knowledge of CBI is given the task of designing and
developing a computer-based course. Instructional strategies
that work in a classroom are often inappropriate in a computer-
based setting (e.g., leuding questions may work well in a
classroom but are difficult to handle in a computer setting).
Likewise, the computer offers the capability to present
instruction in ways that are not possible in the classroom (e.qg.,
computer simulations models can be used to enhance CBI).

The Advanced Instructional Design Advisor is a project aimed
at providing subject matter experts who have no background in
computer-based instructional systems with automated and
intelligent assistance in the design and development of CBI. The
goal is to reduce CBI development time while ensuring that the

instructional materials are effective.

vi

I. INTRODUCTION (Hioki)

The Advanced Instructional Design Advisor is an R & D
project aimed at providing automated and intelligent assistance
to inexperienced instructional designers tasked to design and
develop computer-based instruction (CBI). The particular problem
addressed by this line of research is the need for more cost
efficient methodologies for the design and development of CBI.
Current methods for developing CBI are expensive, time-consuming,
and often result in ineffective instruction due t¢ the general
lack of expertise in computer-based instructional systems
(Spector, 1990).

The Advanced Instructional Design Advisor project is divided
into four phases:

Phase 1: Conceptualization & Functional Specifications
Phase 2: Conceptual Refinement & System Specifications
Phase 3: Prototype, Field Test, & Refinement

Phase 4: Technology Demonstration & System Validation

The first two phases have been performed under Task Order
Contracts. The third phase is being accomplished via a Broad
Agency Announcement (BAA). The fourth phase will be performed
under a fully specified contract. The work reported herein
concerns the second phase.

The next four sections of this paper focus on conceptual
approaches to automating the task analysis process and
instructional design of maintenance training, specifically
procedural and troubleshooting training, which could be
implemented in an Advanced Instructional Design Advisor-like
systen.

In the second section of this paper, Polson and Polson
present two theoretical approaches describing the acquisition of
proceduralized skills (i.e., Cognitive Complexity Theory (CCT)
and ACT") capable of forming the basis for an AIDA-like system to
generate automated procedural training. Both approaches build on
the general concepts of production systems. CCT is an extension
of the GOMS data representation model while ACT® traces its
beginnings to Anderson’s general theory of skill acquisition.
Other areas addressed include several critical issues concerning
instructional effectiveness. Of greatest concern is the need for
meaningful and correct task analyses prior to instructional
design and development. Without this, instruction is sure to
fail. Other issues elaborated on include structuring and

presenting domain knowledge, sequencing of instruction, and
assessing performance.

A meaningful and correct cognitive task analysis is the
cornerstone for the development of any valid instructional course
and is equally important for CBI. 1In section three, Polson &
Kieras further elaborate on automating the cognitive task
analysis process by discussing the need for capabilities that
support the development of mental models and the execution of
procedure representations. Specific recommendations include
incorporation of a refined GOMS approach with additional
capabilities to capture explanation, breadth of component
representation and explicit procedures.

In section four, Halff envisions beyond the cognitive task
analysis phase and describes the critical instructional design
elements needed for the automation of maintenance training. 1In
this approach, Halff emphasizes the importance of appropriate
mental models, procedures and troubleshooting skills and their
roles as prerequisites in accomplishing maintenance tasks. He
closes this section by providing insights to the automation of
maintenance training followed by automation of the instructional
design process.

Finally, in section five, Halff extends his prior work in
section four by instantiating his description of automating
maintenance training with the specific instance of operational
aircraft maintenance procedures. Within this example, the role
of mental models, troubleshooting procedures and problem solving
skills become apparent within the basic framework of an AIDA.
Halff closes this section by discussing the instructional
implications of this approach.

IXI. AIDA: PROCEDURAL TRAINING (Polson & Polson)
Introduction

This document is intended to summarize the relevant
theoretical and empirical knowledge on the acquisition of
procedural skills from the cognitive science literature. Of
particular interest are those aspects of the literature that
would be relevant to constructing a transactional shell that
could be used by a person who is a subject matter expert, but a
novice instructional designer, to create computer based training
materials for teaching procedural skills. We will first cover
the background literature, focusing on the recent cognitive
science literature, then consider the implications for
instructional design.

Foundations of the Cognitive Science
Symbolic Information Processing Approach

One aspect of cognitive science that is directly relevant to
the task at hand is the symbolic information processing approach
that has its foundations in the early problem solving work of
Newell and Simon (1972) and the work on human computer
interaction by Card, Moran, and Newell (1983). This work formed
the basis of later relevant research by a number of
investigators, including the ACT’ theory of Anderson (Anderson,
1983, 1987; Anderson, Boyle, Corbett, & Lewis, 1990) and the
Cognitive Complexity Theory of Kieras and Polson (Kieras &
Bovair, 1986; Kieras & Polson, 1985; Bovair, Kieras, & Polson,
1990).

The System Architecture

The clearest summary of the information processing approach
as it stood in the early eighties is found in Card et al. (1983).
In Chapter 2 of their book, they laid out the basic assumptions
about the architecture of the system. Briefly summarized, the
underlying assumptions are:

1. The architecture of human cognition is that of an
information processor. The components of the processor are:

a. A PERCEPTUAL system that includes

- Perceptual memories
- Perceptual processors

b. A MOTOR system

C. A COGNITIVE system that includes
- Cognitive memories including

-- Working memory which contains knowledge
currently active.

-- Long term memory which contains knowledge
stored for future use.

- A cognitive processor

2. Notable features of this architecture, which have
educational implications, are that 1) working memory is limited
in capacity, while long term memory appears not to have capacity
limits; 2) the basic unit of the cognitive processor is assumed
to be a recognize-act cycle and all cognitive processing is the
result of a discrete number of cycles; and 3) on each cycle the
contents of working memory activate or recognize associated
actions in long term memory which, in turn, changes the contents
of working memory.

3. Some basic assumptions about human behavior are that
1) it is rational and goal oriented, i.e. purposeful; 2) all
behavior is an instance of problem solving to achieve a goal; and
3) problem solving is a process of moving from some initial state
to the desired end state or goal by using various methods,
heuristics, or strategies (see also Gagné, 1985; Kintsch,
Tennyson, Gagné and Muraida, 1991; Polson, Tennyson and Spector,
1991, and Section III).

Representation of Procedural Knowledge

In addition to summarizing the current view of the
architecture of the human information processing system, Card et
al. (1983) developed a general representation scheme for the
knowledge underlying routine cognitive skills involved in
successful use of computers and other complex artifacts. Their
representation is called a GOMS model.

The GOMS Model

1. Goals, Operations, Methods, and Selection Rules

The GOMS model (Card et al., 1983) represents a person’s
knowledge of how to carry out routine skills in terms of goals,
operations, methods, and selection rules.

Goals represent a person’s intention to perform a task,
subtask, or single cognitive or physical operation. Goals are
organized into structures of interrelated goals that sequence

methods and operations. Examples of goals are to locate the
fault in a malfunctioning piece of equipment, to align a search
processor in a phased-array radar, or to edit a manuscript.

Operations characterize elementary physical actions (e.q.,
pressing a button, setting a switch, or attaching a probe) and
cognitive or mental operations (e.g., perceptual operations,
retrieving an item from memory, or reading a voltage and storing
it in working memory). The most primitive mental operations are
actions such as receiving perceptual information, making a basic
decision, depositing facts from working memory into long term
memory, retrieving facts from long term memory and activating
them in working memory, forming a gcal, etc. These primitive
operations are the basic operations of the cognitive information
processor.

A person’s knowledge is organized into methods which can be
thought of as subroutines. Methods generate sequences of
operations that accomplish specific goals or subgoals. The goal
structure of a method characterizes its internal organization and
control structure. Examples include methods for diagnosing a
fault.

Selection rules specify the appropriate conditions executing
a method to effectively accomplish a specific goal in a given
context. Selection rules are compiled pieces of problem-solving
knowledge. They function by asserting the goal to execute a
given method in the appropriate context.

2. The Content and Structure of Procedural Knowledge

The GOMS model assumes that execution of a task or procedure
involves decomposition of the task into a series of subtasks. A
skilled person executing a procedure has effective methods for
each subtask. Accomplishing a task involves executing the series
of specialized methods that perform each subtask. There are
several kinds of methods. High-level methods decompose the
initial task into a sequence of subtasks. Intermediate-level
methods describe the sequence of functions necessary to complete
a subtask. Low-level methods generate the actual user actions
necessary to perform a function.

A person’s knowledge of how to do a complex task is a mixture
of task-specific information--the high-level methods--and
system-specific knowledge, the low-level methods.
Intermediate~level methods can appear in many different contexts.
For example, to move a section of text using a word processor, a
subtask involves selecting the text.

Then, a high-level method would be
- move the text

Intermediate methods would include
- select the text
- cut the text
- locate the place where the text is to be inserted
- insert the text

Low level methods include
For selecting the text
- set the cursor at the beginning of the text to be
moved
- press the mouse button
- set the cursor at the end of the text to be moved
- press the shift key and the mouse button
simultaneously
For cutting the text
- select cut from the edit menu

In summary, the GOMS model characterizes the user’s knowledge
as a collection of hierarchically organized methods and
associated goal structures that sequence methods and operations.
The knowledge captured in the GOMS representation describes both
general knowledge of how the task is to be decomposed and
specific information on how to execute methods required to
complete the task of entering a route.

Although Simon (1975) had earlier used the production system
formalism to model problem solving, Card et al. (1983) only noted
that the cognitive processor could be modeled as a production
system without elaborating the point. Since then, using the GOMS
model as a foundation, production system models have been
developed for various cognitive processes including the use of
text editors (Kieras & Polson 1985, Singley & Anderson, 1989),
problem solving (Karat, 1983;), and text comprehension (Kieras,
1982). Anderson (1982, 1983) extended Newell and Simon’s (1972)
approach and developed a general theory of cognition, called the
ACT " theory, based on a production system formalism. Kieras and
Polson (1985) proposed in a framework called the cognitive
complexity theory, CCT, that the knowledge represented in a GOMS
model be formalized as a production system. Before elaborating
this work further, we will give a brief overview of a production
system formalism.

Production System Models
A production system is made up of three components:

1. a collection of rules describing the knowledge required
to perform a task;

2. a working memory containing a representation of a user’s
immediate grals, intermediate results generated during the

execution of a method, and a representation of the external
behavior of the system; and

3. an interpreter that controls execution of the rules.

A rule is a condition-action pair of the form
IF (condition) THEN (action)

where the condition and action are both complex. The condition
represents a pattern of information in working memory that
specifies when a physical action or cognitive operation
represented in the action should be executed. The condition
includes a description of an explicit pattern of goals and
subgoals, the state of the environment, (e.g., the state of the
switches and other information on a piece of equipment), and
other needed information in working memory (e.g.,the desired
voltage reading or some other parameter).

ACT" Theory

Anderson (1983, 1987) has the broadest theory of cognition in
which there has been a serious attempt to relate the principles
of the theory to the acquisition of proceduralized skills. This
application of his ACT® theory is very nicely elucidated in three
recent papers (Anderson, 1987, 1990; Anderson et al., 1990).

An integral part of Anderson’s theory of skill acquisition is
the distinc’.ion »e*ween declarative and procedural knowledge, a
distinction which was first made in the field of Artificial
Intelligence over a decade ago (e.g., Winograd, 1975) and has
important educational implications. In the ACT' theory knowledge
of facts, rules, concepts, past events, etc. are all aspects of
declarative knowledge. This knowledge is characterized by the
fact that we have conscious access to it, it can be encoded
relatively quickly, and it can be acquired without any particular
commitment as to how it will be used. Declarative knowledge may
be acquired in numerous different ways; reading text, watching
film, a conversational discourse, everyday experiences, etc.
(Anderson et al., 1990).

The acquisition of declarative knowledge must precede the
acquisition of procedural knowledge. In the ACT" theory
procedural knowledge is acquired through the interpretative
application of declarative knowledge. This process involves
trial and error pr :ctice. Once acquired, procedural knowledge is
embodied in a highly use specific way (Anderson et al., 199C).

Fundamental to the distinction between declarative and
procedural knowledge is the assumed difference in the underlying

representation. 1In the ACT theory and other theories dealing
primarily with factual knowledge (van Dijk and Kintsch, 1983,
Kintsch, 1988), declarative knowledge is represented as a network
of labeled nodes. The labeled connections each have some level
of strength or activation associated with them which denotes the
strength of the association, either negative or positive. The
nodes may be single propositions, concepts, instances of a
concept, plans, or schema.

Procedural skills and other cognitive skills are generally
represented as productions (however, see Schneider & Detwiler,
1988, for a different view). Productions are the key element of
Anderson’s view of skill acquisition. Cognitive skills of which
procedural skills are an example are modeled by a set of
productions which are hierarchically arranged. Productions form
both the cognitive units and specify the hierarchical goal
structure that organizes the problem solving. Workirg memory
contains the active knowledge that is available at the time.
When a new goal, such as "solve this algebra problen" is
established by some external event, then this goal becomes active
in working memory. If this goal is the condition part of an
established "macro" production for solving that type of problem,
which exists in production memory, then that production will be
applied and a solution generated to the problem. However, if a
known solution does not exist, then a search must begin for a
solution. The assumption is made that people solve novel
problems by applying weak-problem solving methods to the
declarative memory that they have about this domain. These
weak-problem solving solutions include analogy, means-ends
analysis, working backward, hill climbing, and forward search
(Newell & Simon, 1972).

Using these weak problem solving rules, which are not
specific to any domain, a solution to the problem is generated.
Which weak method will be used is determined by what declarative
knowledge exists about the domain. As the problem is solved by
successively searching through declarative memory for the
necessary conditions, a trace of the hierarchically organized
productions is produced. The learning mechanism is a compilation
process that creates efficient domain specific productions from
this trace.

Proceduralization is the first aspect of this compilation
process. As the production trace is generated in the production
memory, it is now no longer necessary to search declarative
memory for the conditions; therefore they no longer have to be
held in working memory, thereby reducing the processing load and
decreasing the likelihood of an error.

The next stage is compilation. The series of productions are
compiled into a single production which accomplishes the same

task. Compilation speeds up performance considerably. This
compiled production is now available to produce solutions to
future problems of this nature. This highly compiled knowledge
is not open to introspection. The intermediate steps are no
longer accessible without some type of reconstruction process.

Both declarative knowledge and productions are strengthened
with use or practice. The strongest relevant declarative
knowledge is most likely to be in working memory. Stronger
productions are more rapidly matched to the contents of working
memory. Strength primarily affects speed, but has a secondary
effect on accuracy (Anderson et al., 1990).

Anderson has developed intelligent tutoring systems for LISP
and Geometry that are based on this account of learning
(Anderson, Boyle, Farrell, & Reiser, 1984). These tutors have
been very successful. 1In fact, the LISP tutor is one of the few
tutors which evzluation has shown to be successful. From his
work on tutoring, Anderson has derived several principles for
instruction that are derived from the ACT theory (Anderson,

1987; Anderson et al., 1984; Anderson et. al., 1990). These will
be discussed in the implications section later.

Cognitive Complexity Theory

Another line of research which has implications for the
training of procedural skills is the cognitive complexity theory
(CCT) of Kieras and Polson. Kieras and Polson (1985) assume that
cognitive complexity of a task determines the difficulties in
acquisition, transfer, and retention of the skills necessary to
perform the task. Their work is done in the domain of using a
computer system, but the results can apply to other systems,
particularly computer based equipment, which is becoming
increasingly common. Cognitive complexity is a function of the
content, structure, and amount of knowledge required to perform a
task using a specific system.

The theoretical foundations for the CCT work on the analyses
of acquisition, transfer, and retention is the GOMS model (Card
et al., 1983). Both CCT and the GOMS model characterize the
knowledge necessary to perform routine cognitive skills, such as
operation of a text editor. The GOMS formalism describes the
content and structure of the knowledge underlying these skills.
CCT represents this knowledye as production rules permitting
qguantification of the amount of knowledge. CCT incorporates all
of the assumptions of the GOMS model. Quantitative predictions
of training time, transfer of skills, and performance can be
derived from the production rule formalism (Polson, 1987; Polson
& Kieras, 1985; Polson, Muncher, & Engelbeck, 1986).

Procedural Learning and Transfer of Training

The dominant theoretical approach for explaining specific
transfer effects is based on a framework proposed by Thorndike
and Woodward (1901) and Thorndike (1914). 1In this approach,
transfer between two tasks is mediated by the number of common
elements assumed to be stimulus~response associations.
Associations acquired in a first task that successfully
generalize to a second do not have to be relearned during the
acgquisition of the second task. Only those associations unique
to the second task have to be acquired. If a large number of the
associations required to successfully perform the second task
transfer from the first task, there can be a dramatic reduction
in training time compared to the training time required for the
second task without experience on the first.

Both Kieras and Polson (Kieras & Bovair, 1986; Polson &
Kieras, 1985) as well as Singley and Anderson (1989) have
proposed that a common elements theory of transfer could account
for positive transfer effects during the acquisition of operating
procedures. They assumed that the common elements are individual
rules. For instance, in a computer system with a consistent
interfacea such as the Macintosh, common methods are used to
achieve the same goals even when these goals occur in different
tasks. These shared methods are represented by rules common to
models of the different tasks. It is assumed that these shared
rules, once learned, are always incorporated into the
representation of a new task at little or no cost in training
time. After a user has had some experience with an application
program with a consistent user interface, learning a new task
requires the acquisition of a small number of unique rules.

These new rules may be a small fraction of the total number of
rules necessary to execute the new task. Rules representing the
common methods transfer and do not have to be relearned. In many
areas, these common methods can be a large part of the knowledge
required to perform the new task.

The transfer processes outlined above are the basis for
derivations of models fit to data derived from transfer
experiments (Bovair et al., 1990; Polson et al., 1985; Singley
and Anderson, 1989). These transfer processes incorporate three
strong assumptions. First, there is no characterization of
nonspecific transfer effects, (e.g. generalized practice
effects); it is assumed that improvements and performance are
mediated by common rules. Second, these shared rules are
recognized and utilized in novel contexts. Third, common rules
can be incorporated into the representation of a new task at no
cost in training time. This theory has implications for how
procedural knowledge should be represented, the most efficient
order for the acquisition of skills, as well as other aspects of
procedural training which will be discussed in the next section.

10

Implications for a Transaction Shell
on Procedural Learning

Task Analysis and Representation of Knowledge

The major difficulty that will be faced in developing a
successful transactional shell for developing courseware for
procedural learning skills will be performing a successful task
analysis. It has been widely recognized in the educational
literature since Gagné (1968) that successful instruction in a
complex task involves decomposing the task into a collection of
meaningful subtasks. Modern cognitive theories (Bovair et al.,
1990; Card et al., 1983; and Newell & Simon, 1972) all require
that a theorist provide a correct goal structure for a complex
task in order to be able to successfully model the acquisition
and performance of that task.

The terms meaningful and correct are what make things
difficult. A complex task can obviously be divided up into an
arbitrary collection of hierarchically arranged components. A
meaningful and correct decomposition reflects the actual
underlying structure of the task in a comprehensible manner that
can be learned by a student. For example, a given subtask cannot
be arbitrarily complex. If it contains more than four or five
major components the subtask in turn must be decomposed into a
collection of sub-subtasks (Kieras, 1988a).

Experts have a large amount of knowledge about relevant task
decompositions in the domain of their expertise. However, much
of this knowledge is implicit, i.e. highly compiled, which
presents a problem for instruction. The task of decomposing the
knowledge and making it explicit so it could be incorporated
successfully in instructional manipulations is a very different
skill from the skill of successfully performing the task.

The problem of doing a successful task analysis in
collaboration with the subject matter expert who is not a trained
educator or cognitive scientist is equivalent to the problem of
developing an expert system where the domain expert is not a
knowledge engineer, but must communicate his or her knowledge to
the knowledge engineer in order for it to be incorporated into
the expert system. This process is long and tedious and is often
a severe test of even successful collaborations. During an
initial phase the domain expert describes to the knowledge
engineer his/her understanding of the knowledge underlying
his/her performance. The knowledge engineer then attempts to
incorporate this description into an expert system. The initial
version of this system is incomplete; it contains errors because
the domain expert may not have explicit understanding of the
expertise, and as a result of miscommunications between the
domain expert and the knowledge engineer. Successive iterations
of the developing expert system require that the domain expert

11

gain a more explicit understanding of his expertise and that the
knowledge engineer require extensive knowledge of the application
domain. It should be clear why this is a long and painful
process.

We have the identical problem in performing the critical
useful task analysis that is necessary to develop successful
instructions in the procedural skills necessary to carry complex
maintenance tasks and other skills of interest to the Air Force,
with the added difficulty that we want a machine to be able to
extract the domain knowledge. Modern cognitive theory provides
us with a partial solution to this very difficult problem and
suggests the design of knowledge acquisition tools that can be
incorporated into the transactional shell.

The goal structure of the GOMS model is the modern
representation of such a successful task analysis. Since the
GOMS model has been rigorously formalized as a production (Bovair
et al., 1990) and Kieras (1988a) has developed a set of explicit
heuristics for doing a GOMS analysis, we are in a position to
incorporate these results into a transactional shell that would
support doing task analysis by deriving an appropriat= goal
structure for the skill being tutored. Kieras’ (1988a)
heuristics could be incorporated into the shell and coach a
domain expert during the process of deriving the goal structure
from a task analysis. Thus, if the domain expert defined a
single subtask that violated the complexity criteria for a
subtask, i.e. more than five steps, the shell could prompt the
instructional designer with a suggestion, ‘consider decomposing
the current subtask into a collection of less complex
sub-subtasks’. Furthermore, the tool could also check that the
developing task decomposition was syntactically correct.

Decomposition of Procedural Knowledge for Training

The task decomposition discussed in the preceding section is
the major critical component of decomposing the knowledge
necessary to perform a complicated task into meaningful subtasks.
The next issue to be followed up is the grain size of the actual
steps in the procedure. Here again, we can look to the cognitive
complexity theory (Bovair et al., 1990) for very explicit rules.
Furthermore, these rules are supported by an extensive body of
empirical evidence (Anderson et al., 1990; Bovair et al., 1990;
Polson & Richardson, 1988; Singley & Anderson, 1989). Anderson
(1983) argues that an individual production is the cognitive
unit. Thus, the learner ultimately has to be provided with the
information necessary to derive the seguence of productions
necessary to carry out a task. Anderson also advocates that the
student model be represented as a production system in an
intelligent tutoring system. We are not advocating this here.
However, a rich collection of theoretical results provides us
with very precise answers as to grain size of the instructional

12

material, which may need to be adjusted as the student progresses
(Anderson et al., 1984).

The task analysis, a subgoal decomposition using the GOMS
terminology, decomposes the top level goal of performing the task
into a collection of subtasks and their associated goals. The
decomposition terminates in the sequence of physical actions and
elementary cognitive operations necessary to accomplish each of
the lowest level subtasks. Kieras (1990) provides some very
specific heuristics for making decisions about this grain size.
The general result seems to be that physical actions that take
less than a second and cognitive operations that take from a
tenth of a second to a second represent the appropriate grain
size. Bovair et al. (1990) argues that in a novice a single rule
represents a single physical action or cognitive operation.

Obtaining the single production grain size may not be as
difficult as it sounds. Following is a section of the Technical
Order 31P1-2FPS85-52 on adjusting the search processor power
supplies in a phased array radar.

5-41. SEARCH PROCESSOR ALIGNMENT

5-42. GENERAL. The search processor alignment consists of power
supply adjustments, power supply monitor adjustments, and precise
adjustment of search processor channels and associated logic and
monopulse circuits.

NOTE
Accurate alignment of the search processor
requires that the search digital processor be
aligned prior to aligning the search analog
processor. Refer to T. 0. 31P1-2FPS-85-282
(Paragraph 5-17, SEARCH DIGITAL PROCESSOR

ALIGNMENT) .

5-43. TEST EQUIPMENT REQUIRED.
The following test equipment, or suitable equivalent, is required
to perform the search processor alignment:

NOTE: 30 item equipment list omitted as not relevant to point

5-44. POWER SUPPLY ADJUSTMENTS.

Perform the following procedure to adjust the search processor
power supplies (PS1 through PS5). Ensure that the search
processor is in an off-line cleared status prior to making any
adjustments.

13

1.

NOTE
If CURRENT LIMIT potentiometer adjustments do
not result in a drop off (step e below) set
this control to approximately 1/8 turn from
the fully counterclockwise position.

PS1 Adjustments

a.

b.

f.

On power monitor panel 25616A2A1, set selector switch S1
to PS1.

On power supply PS1, set VOLTAGE ADJUST potentiometer on
front panel fully clockwise.

Set CURRENT LIMIT potentiometer on front panel fully
clockwise.

Oon panel A2Al, adjust -12 VDC PS1 VOLTAGE ADJUST
potentiometer for 12 vdc as indicated on front panel
meter.

On PS1, adjust CURRENT LIMIT potentiometer
counterclockwise until voltage indicated on front panel
meter just begins to drop off.

Rotate CURRENT LIMIT potentiometer approximately 1/8 turn
clockwise.

PS2 Adjustments

a.
b.
c.

d.

f.

On power monitor panel 25616A2A1, set selector switch S1
to PS2.

On power supply PS2, set VOLTAGE ADJUST potentiometer on
front panel fully clockwise.

Set CURRENT LIMIT potentiometer on front panel fully
clockwise.

On panel A2Al1, adjust -12 VDC PS2 VOLTAGE ADJUST
potentiometer for 12 vdc as indicated on front panel
meter.

On PS2, adjust CURRENT LIMIT potentiometer
counterclockwise until voltage indicated on front panel
meter just begins to drop off.

Rotate CURRENT LIMIT potentiometer approximately 1/8 turn
clockwise.

PS3 Adjustments

a.
b.
c.

d.

On power monitor panel 25616A2A1, set selector switch S1
to PS3.

On power supply PS3, set VOLTAGE ADJUST potentiometer on
front panel fully clockwise.

Set CURRENT LIMIT potentiometer on front panel fully
clockwise.

On panel A2Al1, adjust -6 VDC PS3 VOLTAGE ADJUST
potentiometer for 6 vdc as indicated on front panel meter.
On PS3, adjust CURRENT LIMIT potentiometer
counterclockwise until voltage indicated on front panel
meter just begins to drop off.

Rotate CURRENT LIMIT potentiometer approximately 1/8 turn
clockwise.

14

4. PS4 Adjustments

a. On power monitor panel 25616A2Al1, set selector switch S1
to PS4.

b. On power supply PS4, set VOLTAGE ADJUST potentiometer on
front panel fully clockwise.

c. Set CURRENT LIMIT potentiometer on front panel fully
clockwise.

d. On panel A2Al, adjust +G VDC PS4 VOLTAGE ADJUST
potentiometer for 6 vdc as indicated on front panel meter.

€. On PS4, adjust CURRENT LIMIT potentiometer
counterclockwise until voltage indicated on front panel
meter just begins to drop off.

f. Rotate CURRENT LIMIT potentiometer approximately 1/8 turn
clockwise.

5. PS5 Adjustments

a. On power monitor panel 25616A2A1, set selector switch S1
to PSS.

b. On power supply PS5, set VOLTAGE ADJUST potentiometer on
front panel fully clockwise.

c. Set CURRENT LIMIT potentiometer on front panel fully
clockwise.

d. On panel A2Al1, adjust +12 VDC PS5 VOLTAGE ADJUST
potentiometer for 12 vdc as indicated on front panel
meter.

e. On PS5, adjust CURRENT LIMIT potentiometer
counterclockwise until voltage indicated on front panel
meter just begins to drop off.

f. Rotate CURRENT LIMIT potentiometer approximately 1/8 turn
clockwise.

5-45. POWER SUPPLY MONITOR ADJUSTMENTS. Perform the following
procedure to adjust the search processor power supply monitors
(PS1 through PS5) and voltage regulator monitor (VR1).

NOTE

Complete paragraph 5-44, power supply
adjustments, prior to performing this
procedure. Additionally, ensure that all
power supply IN TOLERANCE (green) lamps are
illuminated prior to performing each power
supply monitor adjustment.

These technical orders are, for the most part, at the level
of the single production. However there are only minimal hints
as to the goal structure. In this case, the primary task of the
analysis module of the transaction shell would be to extract the
goal structure from the subject matter expert and arrange the
steps within that hierarchial structure. For a novice, even the

15

individual switch adjustments which contain six steps are too
long for a single goal (see Bovair et. al., 1990; Kieras, 1988a).

Presenting Declarative Knowledge in a Way that Facilitates the
Learning of Procedures

There are two problems in providing explicit instruction on a
complex procedural skill. The first, and most obvious, is simply
the sheer volume of knowledge to be learned. A complex skill
will probably be represented by several hundred rules. For
relatively simple tasks, up to about 50 rules, the training time
per rule seems to range between 20 to 40 seconds when using a
very intrusive constraining tutorial procedure that optimizes
rote learning. (We are not advocating this training process.)
The figure of from 20 to 40 seconds ignores the extra training
that would be required to eliminate confusion between highly
similar rules and to learn rules to a criterion that would permit
them to be retained over days or months or years. (Bovair et
al.; 1990; Olson & Olson, 1990; Polson et al., 1988).

The other problem concerns the concepts that are incorporated
into the goal and subgoal descriptions. These concepts are part
of the clarity of knowledge that an expert has about the task
domain. They also may refer to an expert’s extensive knowledge
of how a device to be maintained or troubleshooted actually
works. Thus, a top level subgoal in some complex maintenance
procedures might be to align the RF oscillator. These are all
meaningful concepts to the expert. To the novice they are
probably just a collection of nonsense syllables. The difficult
question then becomes how do we provide the necessary instruction
in this declarative knowledge, the concepts that make meaningful
the elements of the goal structure. Anderson et al. (1990) and
Kieras, (Kieras, 1990; Kieras & Bovair, 1984, 1986) have
advocated developing text for teaching the declarative knowledge
from a complete simulation of the task, thereby incorporating all
the necessary knowledge for the task, but eliminating any
extraneous information. To the extent that the task analysis
module produces a reasonably explicit analysis at the appropriate
grain level, this may be a feasible approach. However, it should
be noted that researchers who have concentrated on the
acquisition of declarative knowledge place more emphasis on
teaching the student the necessary monitoring and strategic
skills to enable them to examine their own knowledge structures
for completeness and providing support to make the nature of the
knowledge structures evident than presenting a pre-digested text
(Campione & Brown, 1990; Kintsch et al., 1991; Nathan, Kintsch, &
Lewis, 1988; Palincsar & Brown, 1984; Scardemalia et al., 1989).
This is an area that could use further research.

16

Training Should be_ in_the Context of Actually Performing the

Procedure of a Simulation of that Procedure

This statement is somewhat weaker than the recommendation |
from the intelligent tutoring community (Anderson et al., 1984;
Frederiksen & White, 1990) which states that learning should be
problem centered or that instruction should be in the problem
solving context. We use the weaker version because the stronger
version may indeed require an intelligent tutoring system.
However the higher level goal should be strived for whenever
possible. 1In the technical order example given above, it would
not take much machine intelligence to give instruction on the
first switch setting and let the trainee attempt to set the next
switch without further instruction on a computer based
simulation. From the transfer of training approach there is a
minimum amount to be learned in that transfer. For computer
based training of procedural skills training in the context of
actually performing the task means that at least some minimal
level of simulation of the task will need to be available. The
typical subject matter expert/novice instructional designer in
most Air Force fields is not likely to have extensive programming
skills, therefore some type of easy to use simulation package
will need to be accessible from the transaction shell. This
leads back to one of the first author’s favorite hobby horses,
the need to provide guidance on graphics.

Performance Assessment

Declarative knowledge of a skill is a necessary, but not
sufficient, condition for actually acquiring the skill.
Therefore, assessment techniques such as multiple choice
dguestions, which assess only declarative knowledge, are not
adequate for testing if a procedural skill is learned. The
actual performance of the task or a simulation thereof will need
to be assessed (for a discussion see Frederiksen, 1990;
Frederiksen & White, 1990). Correct performance of a task is
also not a sufficient condition for determining that training is
adequate. Note that in the Anderson framework a procedure can be
correctly performed before compilation occurs. Additional
practice will be needed after initial successful performance to
progress from proceduralization to compilation. After
compilation still further practice will be needed to strengthen
the activation level of the procedure, which both makes it faster
to execute and decreases the amount of working memory resources
that it requires (Anderson et al., 1984; Anderson et al., 1990).
At this point speed of correct performance will be a better
decision criteria for determining when training should be
terminated than accuracy (Anderson, 1990; Schneider, 1985).

17

Minimizing Working Memory Load

All of the approaches discussed stress the necessity to
minimize the load on working memory when training procedural
skills. Recommendations for achieving this goal include:

1. Provide some means, either graphic or otherwise, of
making the trainees aware of where they are in the goal
hierarchy. Goals serve as memory aids to help the trainees
remember where they are and what is to be done next. Relieving
the trainee of the necessity of keeping this information in
working memory frees up resources to devote to other aspects of
the learning task. (Anderson et al., 1984; Scardemalia et al.,
1989).

2. Ensure that earlier steps are sufficiently mastered (i.e.
practiced) so that they will require few working memory
resources. (This recommendation is related to the automaticity
issue which will be briefly discussed later.) This leaves
working memory capacity to incorporate new productions for
compilation.

3. Order training such that a minimum number of new
productions are to be acquired at one time (see also the next
section).

Training Sequence for Procedures for Efficient Learning

In the Kieras and Polson CCT model learning time for a
subtask is determined by the number of new productions to be
learned. Therefore to minimize frustration levels and keep
motivation levels high, whenever possible, new tasks to be
learned should be arranged so that minimum amount of new
information needs to be acquired at each step. The cognitive
science approaches also stress the necessity for providing
support for successful performance before the entire skill has
been acquired (Anderson et al., 1984; Anderson et. al., 1990;
Frederiksen & White, 1990). Anderson et al. (1984) state this
principle as "enable the student to approach the target skill by
successive approximation" (p 5).

Feedback

Timing of feedback on errors

One controversial conclusion that Anderson and his colleagues
concluded from their work on tutors is that feedback on errors
needs to be as immediate as is possible, i.e. as soon as the
error is diagnosed (Anderson et al., 1984; Anderson, 1990;
Reiser, Kimberg, Lovett, & Ranney, 1989). This view is based on
the fact that the student is building a trace of the necessary
productions to solve the problem as he works. Errors and

18

digressions only slow the process of building the correct trace.
Also when students get lost, they use tremendous amounts of
cognitive resources to get back to their original goals
(Anderson, 1982).

However, other studies of computer-based feedback cast some
doubt on how immediate the feedback should be. Schmalhofer,
Kuehn, Messamer, and Charron (1989) have shown that a "selective"
tutor--one that provides feedback only after two consecutive
errors have occurred--had certain advantages in introductory LISP
learning and problem solving over an "immediate" tutor--the type
advocated by Anderson and his colleagues.

Similarly, Lee (1989) showed that delayed feedback in a tutor
for solving genetics problems can lead to better overall problem
solving than immediate feedback, especially on novel or difficult
problems. Immediate feedback in these domains may lead to "blind
learning" where the student can use trial and error to complete a
problem, but has no notion of the reasoning or principles
underlying a solution. Since the reasoning may not be overt in
the error correction, it is difficult for the student to learn
it. Also students may need to be allowed time to self-correct,
since self-generated answers are better remembered than those
supplied externally. (See Anderson, 1983, chapter 4 for a
discussion of this issue.) Timing of feedback may also need to
be adjusted as a function of the experience level of the student.
Novices may like and need immediate feedback, while more
experienced students find it annoying (Anderson et al., 1590).

Other aspects of feedback

A number of researchers in the cognitive sciences area have
addressed the area of the type of feedback that should be given.
Although the conclusions are stated in a number of different
ways, basically the feedback should be designed to encourage the
student to think through the processes necessary to arrive at the
correct answer, rather than just supplying the correct answer
(Anderson et al., 1984; Frederiksen & White, 1990; Scardemalia,
Bereiter, Mclean, Swallow, & Woodruff, 1989).

There is sufficient controversy concerning the timing and
nature of feedback that more research is needed in this area
before a definitive recommendation can be made.

Automaticity and Procedural Training

Another aspect of cognitive science which is relevant to the
training of procedural skills is the literature on automaticity.
(See for example Regian & Schneider, 1990 and Schneider, 1985).
The issues to which this literature is relevant include:

1. How to assess when training should be terminated.

19

2. What types of tasks can be automated and will therefore
benefit from extended practice?

3. The order in which tasks that require the performance of
more than one skill at once should be trained.

The simulation techniques in this field are an example of the
nonsymbolic, connectionist tradition in cognitive science and
will require additional background material that could not be
addressed in the time allotted in this cycle.

20

III. TASK ANALYSIS IN AIDA (Polson & Kieras)

Introduction

The first step in the design of any instruction is a task
analysis to determine what should be taught. From the cognitive
science information processing approach, it is argued that a
behavioral analysis is not sufficient. A cognitive analysis
needs to be performed because education and training should take
into account the cognitive processes involved in learning and
performance, not just the objective behaviors required (See
Glazer & Bassock; 1989, as well as several chapters in Psotka,
Massey, & Mutter, 1988 for recent discussions of this issue).

Section IV of this report identifies three types of cognitive
structures important to the maintenance enterprise: the execution
of procedures, a mental model of the equipment, and fault
isolation skills. Thus an adequate cognitive task analysis
should identify the information and skills that must be imparted
to the student to support the acquisition of these cognitive
structures. Due to time limitations in this paper, I will only
address the areas of procedures and mental models.

The current walk-through of generating, with an Advanced
Instructional Design Advisor System (AIDA), training materials on
the T-38A aircraft is partly based on two cognitive task analyses
performed by David Kieras of the University of Michigan. The
first, presented in Kieras (1988b), centered on the issue of what
mental model should be taught concerning the engine ignition
system of the T-38A aircraft and was used in constructing the
example training materials in the RAPIDS II Authoring Manual.

The second, generated by a subcontract to this effort, is a
cognitive task analysis of the troubleshooting procedures for the
fault of "no start" in the T-38A engine (See Appendix A).

While the current walk-through is based in part on Kieras’
cognitive task analysis, little attention has been paid to date
to specifying the nature of the task analysis in the AIDA system.
The primary focus of this paper is to explore the task analysis
conducted by Kieras as a basis for specifying the task analysis
requirements in an AIDA designed for maintenance training. The
questions to be considered include

- What is the nature of the cognitive task analysis?

- How detailed does the analysis need to be?

- How should that task analysis be represented in AIDA?

-~ How do you map the representation onto the instructional
materials?

- What kinds of aids and/or guidance could be provided to a
novice instructional designer, who might also be a subject
matter expert (SME), but a novice instructional designer,
to perform the task analysis?

21

This paper does not attempt to provide complete or final
answers to the above questions, but primarily strives to spell
out the issues that need to be addressed and some of the relevant
literature. .

Cognitive Analysis of Procedures

The analysis of the troubleshooting procedures done by Kieras
is a particular type of analysis known as a GOMS (Goals,
Operators, Methods, and Selection Rules) analysis, which derives
from the Cognitive Complexity Theory (CCT) of Kieras and Polson,
(Bovair, Kieras, & Polson, 1990) and has as its intellectual
predecessor the work of Card, Moran and Newell, (Card et al.,
1983)'. This approach entails analyzing the tasks to be
accomplished into a meaningful series of goals and subgoals.
Each goal to be accomplished is recursively broken into a series
of subgoals until a level is reached in which accomplishing the
subgoal can be achieved by either a primitive level motor or
mental act. Such a simple act for the T-38A start system would
be press the left start button, or apply the shorting stick.

Goals represent a person’s intention to perform a task,
subtask, or single cognitive or physical operation. Goals are
organized into structures of interrelated goals that sequence
methods and operations. An example goal from troubleshooting the
engine would be to determine if the ignition system is
functioning correctly.

Operations characterize elementary physical actions (e.g.,
pressing a button, setting a switch, or attaching a probe) and
cognitive or mental operations (e.g., perceptual operations,
retrieving an item from memory, or reading a voltage and storing
it in working memory). The most primitive mental operations are
actions such as receiving perceptual information, making a basic
decision, depositing facts from working memory into long term
memory, retrieving facts from long term memory and activating
them in working memory, forming a goal, etc.

Methods generate sequences of operations that accomplish
specific goals or subgoals. The goal structure of a method
characterizes its internal organization and control structure.
The GOMS model assumes that execution of a task or procedure
involves decomposition of the task into a series of subtasks. A
skilled person executing a procedure has effective mathods for
each subtask. A novice may have less efficient methods.
Accomplishing a task involves executing the series of specialized
methods that perform each subtask. There are several kinds of

'This approach was discussed in the previous section, but I
will cover the basic description again, so that this section can be
read apart from the previous one.

22

methods. High-level methods decompose the initial task into a
sequence of subtasks. Intermediate-level methods describe the
sequence of functions necessary to complete a subtask. Low-level
methods generate the actual user actions necessary to perform a
function.

A person’s knowledge of how to do a complex task is a mixture
of task-specific information--the high-level methods--and
system-specific knowledge, the low-level methods.

Then, a high-level method for troubleshooting the T-38A engine
would be

- check out the starting operations of the engine

Intermediate methods which are part of the high level method for
checking out the symptom of no start would include

- check for bad ignition

-~ check for fuel flow problem

- <check for defective starting system

- <check for altitude limitation problem

Low level methods for the intermediate methods include

For checking for bad ignition
- apply shorting stick to AB plug
-~ check the ENGINE IGNITION, R AUTOSYN INST & IGNITION
INVERTER circuit breakers for proper engagement
For fuel flow problem
- check fuel system circuit breakers for proper engagement

Selection rules determine which method to select. 1In an
expert, selection rules are compiled pieces of problem-solving
knowledge. The selection rule must state the appropriate context
for using any given method. If there is more than one method,
the rule must state when each method is appropriate.

In summary, the GOMS model characterizes the user’s knowledge
as a collection of hierarchically organized methods and
associated goal structures that sequence methods and operations.
The knowledge captured in the GOMS representation describes both
general knowledge of how the task is to be decomposed and
specific information on how to execute the methods required to
complete the task.

One of the greatest advantages of this approach for our

purposes is that Kieras has prepared a detailed guide for doing
task analysis of procedures using the GOMS methodology (Kieras,

23

1988a)2. He has also defined a language call (NGOMSL) or
"Natural" GOMS Language which is relatively easy to read and
write. Kieras’ guide also includes procedures for doing a GOMS
analysis by using a breadth-first expansion of methods rather
than trying to describe goal structures directly.

Mental Models Analysis

Section IV of this report summarizes the importance for
maintenance training of imparting correct and adequate mental
models of the equipment. Kieras (1988b, 1990) pointed out that
the most accurate way of determining the mental model to be
taught would be to do a complete cognitive simulation. However,
realizing that this is not always a feasible approach, Kieras
(1988b) spelled out some heuristics that could be used to
determine the mental model that should be taught in lieu of a
complete simulation. The heuristics are:

- relevance to task goals
- accessibility to use
- <critical procedures and inference strategies

All of these heuristics involve doing an analysis equivalent
to a GOMS analysis of the task at hand. 1In addition, two other
hierarchical cognitive analyses are required: an explanation
hierarchy and a hierarchical decomposition of the device
structure and mechanisms. The relevance to task goals heuristic
states that explanations should only be given if they are
relevant to a task goal. To carry out this heuristic an
explanation hierarchy is constructed. The first pass at what
goes into this hierarchy can be what is in the existing
documentation. The goals of the GOMS analysis are then mapped to
the explanation hierarchy, which will reveal any missing
explanatory information as well as any extraneous material which
need not be taught. Constructing the explanation hierarchy is
not really extraneous work since this material is needed for the
instructional material. For instance, this is the material that
goes into the message windows in the Rapids systenmn.

The second heuristic, accessibility to use, implies that the
device illustration or simulation which is presented to the
technician should not contain parts which he cannot access.
Again, this involves a mapping of the GOMS analysis, but onto the
device description, rather than the explanation hierarchy.

’An unpublished 1990 edition of this document can be obtained
from David Kieras, Technical Communications Program, TIDAL Bldg.
2360 Bonisteel Blvd, University of Michigan, Ann Arbor, MI 48109-
2108.

24

The third heuristic says that the GOMS analysis should be
examined for procedures that will be difficult to learn due to
what appears to be arbitrary content. These procedures should
then be analyzed to determine what inferences would need to be
made in order for the content to appear logical rather than
arbitrary. The information necessary to make those inferences
should then be made explicit in the training materials. This
information will need to be included either in the explanation
hierarchy or the device description.

Level of Detail of the Task Analysis

Kieras (Kieras, 1990) as well as Anderson (Anderson, Boyle,
Corbett & Lewis, 1990) have advocated doing a complete cognitive
simulation of a given task which is based on a cognitive analysis
of the task in order to determine the content of instructional
materials and training procedures. The advantage of a simulation
is that it ensures that the analysis is complete down to the
level of simple operations or operators for most aspects of the
task. The information that can be derived from the simulation
includes the time to learn the task, the amount of transfer of
training from one procedure to another, and the execution time
for various procedures or methods. The disadvantage is that a
complete cognitive simulation requires a tremendous amount of
effort to implement, even after the cognitive analysis of the
content of the instruction is complete. However, as can be seen
from the GOMS analysis of Kieras in Appendix A, the use of the
GOMS method for cognitive analysis of procedures does not require
that it be followed through by a complete simulation or that all
tasks be analyzed to the level of simple operators.

How low level the analysis needs to be for the procedures for
any given instructional package will be determined in large part
by the level of expertise of the trainees. For instance, for the
problem of No Start with the Probable Cause of no ignition or
poor ignition®,the first step is to check igniter plugs for
firing and proper spark rate. This is followed by a note that
the proper spark rate is 3 sparks in 2 seconds (See Figure 2).
Presumably this is as low as the analysis needs to go. 1In terms
of a computer based instructional system, this detail could be
represented by clicking on a designated igniter plug icon handle
(handles are mouse sensitive areas) which will give its status.
If the status had been set to bad then the simulation would
continue with the procedure, (the next step if the igniter plugs
do not fire is to check the static inverter). The actual motor
and perceptual operations necessary in checking the spark rates
would not have to be explicitly laid out. However, for a novice
technician some of the steps in the T-38A troubleshooting manual

3(Page 6-7 of Technical Manual for Engine Conditioning of
the T38)

25

such as remove the engine do seem rather high level and may need
to be broken down into subtasks. Anderson (Anderson, Boyle,
Farrell, & Reiser, 1984) refers to this as adjusting the grain
level of the instruction.

As a way of decreasing the workload of authoring the
simulation and/or doing the GOMS analysis for a given domain, a
library of generic low level procedures such as testing igniter
plugs (as well as their corresponding simulations) could be
provided in an AIDA configured for that domain. In fact these
could be a set of separate modules that are given as screening
tests to insure that these low level methods or methods which
occur in many different troubleshooting situations, such as
remove the engine are learned before entering simulations which
are higher level or aimed at specific problems. A problem for a
generic system, as opposed to a system written explicitly for a
domain such as electronic maintenance or airplane maintenance, is
knowing what skills and knowledge can be assumed. If the domain
is known, there is probably a reasonably finite set of testing
skills, mechanical procedures, etc. that are known to be required
to perform the task. For instance, if the student is said to be
at such and such a skill level in a particular field, is there a
list of basic procedures that the student can be expected to know
and which would not have to be represented in detail in a
particular domain?

Representing The Task Analysis

In the CCT approach of Kieras and Polson, a simple production
system is used to implement the results of a NGOMSL analysis into
a working simulation. The device knowledge necessary to carry
out the simulation is represented in a Generalized Transition
Network (GTN)‘(Kieras & Polson, 1985). However, a number of
representation schemes are possible. A scheme used by Anderson
in his PUPS system is a candidate representation that is probably
compatible wilh the Transaction Shell representation discussed by
Merrill (Jones, Li, & Merrill, 1990b). Anderson’s PUPS
(Penultimate Production Systems) theory holds that procedures are
acquired by compiling declarative knowledge (Anderson et al.,
1990). The declarative knowledge necessary for compiling the
procedures which model the task performance is represented in
schema based structures called PUPS structures. These schema
include slots for the function of the entity being represented by
the schema, a form slot for the physical appearance of the
entity, and a precondition slot which states the preconditions
necessary for the function to be achieved (Anderson et al.,
1990). In compiling the productions which are the basis of
procedural knowledge, the function slot maps to the goal to be

‘An example of the representation of a device in the GTN
formalism is given in Kieras, 1990.

26

achieved which will require knowledge of the entity represented;
the preconditions slot maps onto the condition of the
condition-action pair in a production; the form slot in the PUPS
tutors holds the form of the current action to be carried out
such as a particular LISP function. A similar scheme could be
used for representing the GOMS analysis. Merrill has proposed an
activity frame that has paths or sequences of actions. This
frame could also have slots for the function, the operators, and
the outcome. The values for these slots could probably be
automatically generated from a NGOMSL analysis just as it is
technically feasible to generate a running production rule based
simulation from a NGOMSL analysis.

The explanation hierarchy can be represented in numerous
different ways. From my limited understanding it appears that
the representation scheme already proposed by Merrill for AIDA
(Hickey, Spector, & Muraida, in press) would be adequate to
represent the explanation hierarchy. The device knowledge will
ultimately be represented in the graphical simulation. The
initial representation may be a hierarchical listing of the names
of the device components or perhaps a block diagram, which can
serve as a guide for constructing the sketch which will guide the
construction of the graphical simulation.

Mapping the Content of GOMS and Mental Model Analysis to the
Device Simulation

Following Kieras’ approach will yield three hierarchically
arranged representations. The GOMS analysis will spell out the
steps to be followed in carrying out procedures for operating,
calibrating, troubleshooting, or repairing the equipment starting
with the highest level goals and methods. These are successively
decomposed to lower level subgoals and methods. The GOMS
analysis will also identify any device components that need to be
included in the representation of the device structure as well as
the declarative knowledge that needs to be conveyed about them;
function, location, name, etc. The explanation hierarchy will
contain the causal and declarative knowledge necessary to execute
the procedures, support inferences necessary for constructing a
mental model of the equipment, and define the attributes and
rules of objects, etc.

The device simulation in a system such as Rapids contains a
graphic representation of the device structure and qualitative
simulations of its functioning. Authoring in the Rapids II
simulation starts with a temporary sketch which is derived from
the prior cognitive analysis, particularly the mental model
analysis which entails interrelating the GOMS analysis, the
explanation hierarchy and the hierarchical device structure
decomposition. However the construction of the simulation is
done in bottom up fashion starting with the lowest level of the
device hierarchy. The lowest level objects are the bottom items

27

in the device structure analysis. These correspond to the
objects manipulated by the lowest level operators in the GOMS
model. For this reason, it is not feasible to develop the
simulation and do the GOMS analysis and explanation hierarchy in
parallel, which might be tempting to the novice instructional
designer, who wants to get on with "real" work. The analyses
have to be complete before the construction of the simulation can
begin.

The behavior of the objects are defined by attribute handles
and rules. These aspects of the simulation are drawn from the
explanation hierarchy. Once the basic simulation is complete,
procedures which are carried out on the device are authored by
carrying out a sequence of actions which correspond to actions
spelled out to accomplish the goals in the GOMS analysis. The
individual actions correspond to the operators. What is missing
from the simulation representation is any indication of the
function or purpose, i.e. goals, of the procedure. These have to
be represented in the dialogue windows.

Aids for Doing a Cognitive Analysis

As mentioned in the previous section, it should not be
difficult to implement a shell which can guide a novice in doing
a GOMS analysis of a particular task using either the
documentation at hand or the knowledge of a subject matter
expert. The shell can be based on the previous work of Kieras
(Kieras, 1988a) who has invested a large amount of time in
writing a manual on how to do GOMS analysis and in developing an
English-like language for representing the analysis. Included in
the guide are many rules of thumb which could be implemented in a
knowledge based shell to give guidance to the SME or
instructional designer. For instance, Kieras recommends that a
given method contain no more than five steps. If there is more
than that some may need to be grouped into a higher level method.
There is also guidance on creating generic methods to represent
methods which occur often in slightly different context. For
instance, rather than a method for checking each specific circuit
breaker, there would be a check circuit breaker method, which has
as a variable which circuit breaker to check. This variable
information is held in working memory.

This shell could do much of the bookkeeping necessary for a
GOMS analysis such as creating a list of methods and information
identified by the methods that need either already to be known or
taught, such as their location, etc. A more sophisticated shell
could automatically map the results of the analysis into the
knowledge representation system. A less sophisticated system
would create a paper guide for what should be hand entered into
the representation system. Similar shells could also be created
for the explanation hierarchy and the device structure and

28

function knowledge. However, I am not aware of any explicit
guidelines for doing such analyses.

How difficult a given task analysis will be and the type of
guidance that will be needed will depend to a large part on the
nature of the documentation. The diversity of the document is
illustrated by the two excerpts from Technical Orders given in
Figures 1 and 2. Figure 1 shows a section of Technical Order
31P1-2FPS85-52 on adjusting the search processor power supplies
in a phased array radar. The steps in carrying out a procedure
are spelled out in excruciating detail. However, it lacks any
hint of a goal structure or any supporting material for creating
a mental model which could guide the performance of the task.
The problem in doing a cognitive analysis of this task would be
providing this information in the form of the higher level goals
and methods and the explanation hierarchy. It could be noted
that this particular document could have benefitted from the
heuristic of presenting a general method and noting with
variables to which segments of the equipment it would apply with
variables.

Figure 2 is an excerpt from Technical Order 1T-38A-2-6-2 for
engine conditioning of the T-38A aircraft. It goes to the other
extreme in that single steps are the level of remove the engine.
However, the general goal structure is represented in the trouble
and probable cause headers which are always visible.

Conclusions

I recommend that the task analysis approach developed by
Kieras and his colleagues be adopted for the task analysis module
of AIDA. This includes a GOMS analysis for the procedural
aspects of the task and performing a mental model analysis by way
of developing an explanation hierarchy and a decomposition of
device structure and function and relating them to the GOMS
analysis. Developing shells to aid in the cognitive task
analysis is technically feasible. However, a great deal of care
will need to be taken to be sure that the shells are implemented
in such a way that the instructional designer perceives them as
an aid, not a hindrance or an extraneous useless reguirement.

The task analysis can be represented in such a way as to be
compatible with the current conceptualization of the AIDA
representation and the Rapids II formulation. However it may not
be feasible to have a single representation which serves all
aspects of the AIDA system unless a totally new system is
designed which incorporates the ideas of the current components
but not the current implementations.

29

5-41. SEARCH PROCESSOR ALIGNMENT

5-42. GENERAL. The search processor alignment consists of power supply
adjustments, power supply monitor adjustments, and precise adjustment of
search processor channels and associated logic and monopulse circuits.

NOTE
Accurate alignment of the search processor
requires that the search digital processor be
aligned prior to aligning the search analog
processor. Refer to T. O. 31P1-2FPS-85-282
(Paragraph 5-17, SEARCH DIGITAL PROCESSOR

ALIGNMENT) .

5-44. POWER SUPPLY ADJUSTMENTS.

Perform the following procedure to adjust the search processor power supplies
{(PSl through PSS5). Ensure that the search processor is in an off-line cleared
status prior to making any adjustments.

NOTE
If CURRENT LIMIT potentiometer adjustments do not
result in a drop off (step e below) set this
control to approximately 1/8 turn from the fully
counterclockwise position.

l. PS1 Adjustments

a. On power monitor mnar2l 25616A2A1, set selector switch S1 to PSl.

b. On power supply .- ., set VOLTAGE ADJUST potentiometer on front panel
fully clockwise.

c. Set CURRENT LI!..T potentiometer on front panel fully clockwise.

d. On panel A2RAl1l, adjust -~12 VDC PS1 VOLTAGE ADJUST potentiometer for 12
vdc as indicated on front panel meter.

e. On PS1, adjust CURRENT LIMIT potentiometer counterclockwise until
voltage indicated on front panel meter just begins to drop off.

f. Rotate CURRENT LIMIT potentiometer approximately 1/8 turn clockwise.

2. PS2 Adjustments

a. On power monitor panel 25616A2Al1, set selector switch S1 to PS2.

b. On power supply PS2, set VOLTAGE ADJUST potentiometer on front panel
fully clockwise.

c. Set CURRENT LIMIT potentiometer on front panel fully clockwise.

d. On panel A2Al, adjust =-12 VDC PS2 VOLTAGE ADJUST potentiometer for 12
vdc as indicated on front panel meter.

e, On PS2, adjust CURRENT LIMIT potentiometer counterclockwise until
voltage indicated on front panel meter just begins to drop off.

£. Rotate CURRENT LIMIT potentiometer approximately 1/8 turn clockwise.

Figure 1. A Section of Technical Order 31P1-2FPS85-52 on
Adjusting the Search Processor Power Supplies in a
Phased Array Radar.

30

Trouble Probable Cause

6-5. No 1. No ignition or
start poor ignition

Isolation and Remedy

1. Check igniter plugs for firing and
proper spark rate. Spark rate should be 3
sparks in 2 seconds.

NOTE
AB igniter plug can be checked by
looking up the tailpipe. Main
igniter plug can be checked by
shorting out AB plug with a piece of
brass or steel wool attached to a
dry wooden stick and listening for
main igniter plug to fire.

2. 1If igniter plugs do not fire, check
static inverter electrical power by
actuating fuel/oxygen test switch and
checking fuel quantity indicator operation.

3. Check ENGINE IGNITION & R AUTOSYN INST
and IGNITION INVERTER circuit breakers for
proper engagement.

NOTE
If steps 2 and 3 indicate that
static inverter is not operating
properly, check inverter system in
accordance with T. 0. 1T-38A-2-7.

4. Apply external electrical power to
aircraft, and check igniter plugs for
firing.

5. If plugs do not fire with external power
applied to aircraft, check for 115-volts ac
electrical power at pin N in engine and
accessories disconnect plug.

6. 1If electrical power is not available in
pin N, check aircraft electrical system in
accordance with T. O. 1T-38A-2-7.

7. If electrical power is available at pin
N, problem is in the engine. Remove engine
from aircraft.

Figure 2. An Excerpt from Technical Order 1T-38A-2-6-2
for Engine Conditioning of the T38A Aircraft.

31

IV. AUTOMATING MAINTENANCE TRAINING (Halff)
Introduction

This section is concerned with instructional design for
maintenance training. My aim is to identify some common elements
in the design of maintenance training, to suggest how maintenance .
training can be automated with interactive media, and to discuss
the potential for automated development of interactive
maintenance training materials.

Maintenance training is not one, but is rather a large class
of training enterprises, of which the instances are individual
training courses. These courses vary from equipment to
equipment. Within the same class of equipment, courses vary
according to the type of maintenance required-bench versus depot,
for example. Even within these constraints courses can vary
according to instructional objectives. Courses for novices
address different objectives than courses for experienced
maintainers. Courses that address a class of equipment will have
different objectives than courses solely concerned with one
model.

Nonetheless, there are enough commonalities among maintenance
training courses to make maintenance training something of a
natural concept. An effective characterization of the class of
maintenznce training courses should aid in the design (by humans
or computers) of particular courses.

In the first part of this section, I offer such a
characterization in three steps. I first describe the tasks that
constitute effective maintenance. I then describe the mental
structures that support proficiency in these tasks. Finally, I
take up the training regimes that support development of the
mental structures required for proficiency. The treatment
proposed is more descriptive than analytic. Thus, I make no
claim for the uniqueness of any part of this characterization.
To some extent, it reflects current research, but it is also
based on traditions developed within the maintenance training
community itself.

The second part of the section is concerned with automation
of the training process and the development of materials. My aim
in this second part is to suggest a design for automated,
interactive maintenance training based directly on the results of
the first part, and to determine which aspects of this design can
be automatically implemented by computers.

The section concludes with a summary and some general

observations on maintenance training as an example training
domain.

32

Instructional Design for Maintenance Training

Maintenance Tasks

I begin with a rough list of the tasks that a maintainer must
master in order to effectively maintain a piece of equipment.
The tasks described here are equipment oriented in that they
denote what must be done to the equipment. They do not address
issues of how the tasks are accomplished by the maintainer.

Operation

In most maintenance contexts the maintainer must be able to
operate, to some degree, the equipment being maintained.
Operational skills are used to verify the status of the
equipment, to prepare the equipment for maintenance, and to
interpret reports from operators.

Calibration and Adjustment

Many devices must be configured for particular operating
environments, calibrated, and adjusted on occasion. Maintenance
personnel are routinely called on to effect such adjustments.
These adjustments are often a part of preventive maintenance, and
they often constitute repairs.

Testing

Equipment testing is a critical part of maintenance.
Maintainers must be able to test an equipment’s operational
status. They must also be able to conduct particular diagnostic
tests during the course of troubleshooting. These tests often
require the use of general-purpose and specialized test
equipment, and this test equipment must itself ke properly
calibrated and operated.

Access and Disassembly

In the course of repair, testing, and calibration,
maintainers must gain access to particular components for
observation and manipulation. The procedures used to gain access
can be straightforward in some cases. In others, special
procedures are required to ensure that gaining access to one part
of the equipment will not damage other parts. These procedures
are normally specified by the manufacturer of the device.

Repair

By repair, I mean the operations needed to return a device to
operability once a fault has been isolated. Repairs therefore
include replacement of faulted components, cleaning, adjustment,
patching, and a host of other operations.

33

Troubleshooting

Perhaps the most challenging maintenance operation, from a
training viewpoint, is that of troubleshooting. Troubleshooting
is the process of identifying the physical cause (fault) of an
existing or potential malfunction of the equipment’s operational
capabillities. For the most part, troubleshooting takes place
after a malfunction occurs, but troubleshooting also comes into
play when a test—say, during preventive maintenance-reveals a
potential fault.

Cognitive Components of Maintenance Skills

We pass now to the mental structures that support the
maintenance tasks described above. There are any number of
schemes for representing cognition (Anderson (1983) for example,
or Jones, Li, and Merrill (199%0a, 1990b)) each seeking to
distinguish itself from the others by using different terms for
the same concepts. Since my aim in this part is to provide a
useful cognitive framework for discussing maintenance training, I
make no apology for borrowing freely from the cognitive
representation schemes known to me or for ignoring those not
familiar to me.

Three different types of cognitive structures seem to me to
be important to the maintenance enterprise. A mental model of
the equipment figures heavily in virtually all maintenance
operations. Most of the tasks described above require the
execution of fixed procedures. A third component of effective
maintenance are fault isolation skills.

Mental Models of Equipment

Mental models, in the context of maintenance, refer to the
cognitive structures used to reason about the equipment being
maintained. 1In thinking about mental models of a device it is
important to take account of the device’s structure, its function
and its physical manifestation.

1. Structure. An oversimplified view of structural
knowledge can be cast in terms of the equipment’s components and
its topology. On this view, the device is represented as a
directed graph with individual components at the nodes. Each
component is represented by a device model used to derive the
components outputs on the basis of its inputs (or, more
precisely, as a function of inputs and changes therein).
Components can operate in any of a number of modes, including
fault modes, so that differential predictions can be derived for
faulted and not faulted cases.

Reasoning within this model takes the form of propagating
changes from component to component. Informed of an input or

34

change in input to one component, the model derives the
consequences for that component’s outputs and then propagates the
result to the components connected to the original component’s
outputs. The general term for this interpretation process is
qualitative reasoning, as opposed to quantitative reasoning which
derives predictions from the joint application of mathematical
constraints (e.g., Kirchoff’s law).

This model, although it forms the basis for some interesting
work in maintenance training (Johnson, 1988), has some
fundamental inadequacies.

One of the most proublematic difficulties with the simple
conception is discussed extensively in de Kleer and Brown (1983,
1985). De Kleer and Brown point out that for certain common
devices, in particular those involving feedback loops, the simple
interpretation process described above arrives at an impasse that
can only be resolved by either (a) referring to the device’s
function, or (b) bringing certain logical constraints to bear on
the problem. Since (a) is clearly inappropriate in the case of
malfunctioning devices, some consideration must be given to the
joint functioning of logic and gqualitative reasoning in
determining how mental models support troubleshooting.

A second problem with the qualitative reasoning approach, and
one not nearly so well explored in the literature, is that of
bridging the gap between competence and performance models. The
mental models of real technicians, even skilled ones, are always
incomplete, and their reasoning processes are governed by the
same working memory constraints that govern all human mental
activities. Thus, mental models, as they function in real life,
are almost certainly structured to permit the technician to deal
with the device in workable chunks. Maintainers learn to isolate
faults, for example, in larger modules, and then to deal with
components within those modules. The key to understanding how
devices are actually represented in technician’s heads probably
lies in the study of how technicians comprehend technical
documentation and the physical layout of the devices.

2. Function. Functional knowledge of a device (and its
subsystems and components) is even less well understood. From an
extreme qualitative reasoning viewpoint, functional knowledge is
irrelevant, for if the structure of a device is well understood,
its functional characteristics can easily be derived. Intuition
argues, however, that functional knowledge forms the cornerstone
of structural knowledge. Functional knowledge can explain or
rationalize the structure of a device and thus serve, at least,
as a mnemonic for device structure. (For the importance of
mnemonics in cognitive skills, see Chase and Ericsson (1982).) In
addition, as was mentioned above, functional knowledge may be
used to resolve impasses in qualitative reasoning. At the least,
functional knowledge guides the technician’s evaluation of the

35

device’s operaticnal status. Research on mental models of device
functionality is sparse indeed. One of the most interesting
analyses of this sort can be found in Kieras (1988).

3. Imagery. Mental models are of little use unless they can
be correlated in some fashion with the actual equipment. There
is considerable evidence (Kosslyn, 1980) that imagery plays a
significant role in our making sense of the outside world.
Indeed, some assumption about imagery underlies any depiction of
the actual equipment-pictures, high fidelity simulators, the
equipment itself—in training and documentation. Imagery also
plays an important role in providing internal cognitive support
for the mental model. Graphics are pervasive in maintenance
training and documentation, and for good reason. For they
provide concrete imaginal representations of the abstract notions
that make up the working part of the mental model.

4. The Importance of Mental Models. We conclude this part
with a few thoughts on the role of mental models in maintenance.
Kieras (1988) and Kieras and Bovair (1984) provide an interesting
analysis of the importance of mental models in device operation,
and many of these arguments apply also to maintenance. Looking
back to the list of tasks identified above, we car. see the
pervasive support provided by mental models.

a. As Kieras and Bovair point out, mental models provide
constraints that enable effective operation of the
equipment with less than perfect memory of the operating
procedures themselves.

b. Calibration and adjustment are, by definition,
goal-oriented procedures that are supported by a
knowledge of the structural relations between controls
and indicators.

c. While some aspects of testing relate directly to the
equipment’s functionality, most tests are conducted to
establish the condition of particular components or
subsystems. In these cases mental models provide
coherence to the formulation and interpretation of tests.

d. The artifactual nature of equipment means that its
conceptual structure is at least roughly reflected in its
physical structure. Single circuit boards, for example,
often implement single modules. Thus, a mental model of
the device offers considerable advantage to the
technician who must disassemble that device to gain
access to a particular subsystem, module or component.

e. Whenever a technician faces some choice in making a
repair, her mental device model can be used to guide that
decision. To take a simple case, a basic knowledge of

36

how conductors function makes it easier to determine how
to repair an open circuit.

f. Troubleshooting often amounts to testing hypotheses about
the location of a fault. Mental models support this
hypothesis~testing procedure by providing predictions
from various hypotheses.

One might argue that any one of these tasks or functions
could be carried out without reference to a mental model.
However, the large and pervasive advantage that mental models
confer on overcoming inherent cognitive limitations render absurd
the notion that they should not form the basis of maintenance
training.

Procedures

Examining the list of tasks previously identified, one cannot
help but be struck by the extensive procedural requirements of
the maintenance enterprise. One is easily left with the
impression that most of maintenance is nothing more than the
execution of simple procedures. (We can take, as a rough measure
of a procedure’s complexity, the extent of branching or number of
choice points in the procedure.)

1. Procedure Definition. Perhaps the first consideration in
dealing with this wide range of procedures is the question of
definition. Fortunately, the cognitive-science community has
devoted considerable effort to this question. My view of an
appropriate definition for procedures has three parts (which
happily correspond to the three aspects of mental models).

a. A procedure’s control structure defines the sequence of
steps to be taken when executing the procedure. A number
of devices are available for representing control
structure, including augmented transition networks,
and-or graphs, production systems, and others. Whatever
the mechanism, it should have the capability to represent
both branching (decisions) and sequential constraints
(stepwise progression).

b. A procedure’s function defines its teleology or goal.
This term, like that of device function (See "Mental
Models of Equipment" above) is theoretically dispensable
(and, indeed, may never become apparent to some
learners), however, most would argue that an
understanding of a procedure’s function is an
indispensable part of its definition. At the least,
functional knowledge supports the use of the procedure in
problem solving activities.

37

C. Procedures also interact with the outside world. 1In
human terms, therefore, the perceptual-motor
(input-output) concomitants of a procedure are an
important part of its definition. When a procedure calls
for, say, setting switches or reading dials, the
technician must know how to accomplish these actions and
observations.

It is also important to recognize that procedures take their
inputs from and have their effects on knowledge structures, and
in the case of maintenance, on the technician’s mental model of
the device. Thus any definition of a procedure that does not
precisely identify the knowledge structures interrogated or
affected is less than complete. The same can be said of
procedure definitions that refer to undefined knowledge
structures outside of any proposed mental model of the equipment.

2. Procedure Implementation. Clearly, effective execution
of any procedure depends on getting procedural knowledge into the
head of the technician, but how this knowledge gets in, when it
gets in, and in what form are open questions dependent on the
nature of the maintenance enterprise.

In some cases procedures must be fully represented in
procedural form in the head of the maintainer. To take an
extreme case, as soon as the fire light goes on in the cockpit of
an aircraft, the pilot becomes a maintainer, and his initial
procedure for dealing with the situation must be highly
automated.

In other cases, procedures should be interpreted, usually
from descriptions found in job aids and other documentation.
Both preventive maintenance and repairs in steam power plants are
heavily guided by these sorts of procedures. The skills involved
in interpreting these procedures are different, but no less
demanding than the skills represented by fully internalized
procedural knowledge.

In still other cases, procedures are needed that are not
available through training or documentation but rather are
invented by technicians to accomplish particular aims. For
example, combat has been known to inflict widespread damage to
weapon systems and their subsystems. The task of dealing with
such widespread damage is not covered in detail in either
training or documentation (if only because of the astronomical
numbers of possible situations). Nonetheless competent
technicians can often deal with these situations by redesigning
the system on the basis of a mental model.

The invention of procedures to meet certain goals is a
special case of problem solving, and the situations that require

38

this sort of problem-solving in the maintenance arena are of two
types: complex malfunctions and difficult repairs.

Complex malfunctions include such cases as multiple faults,
intermittent malfunctions, faults in systems to complex for
standard troubleshooting practices (e.g., feedback systems),
unreliable test equipment, and parts inventories contaminated
with faulty components. These problems have many of the
characteristics of decision making under uncertainty, but I
suspect that few decision-theoretic strategies are brougnt to
bear on them in actual maintenance situations.

Difficult repairs can occur when large portions of a system
are damaged, when parts needed for particular repairs are not
available, when the equipment or parts thereof are not
accessible, or when other circumstances prevent normal repairs.
Solutions to these problems often involve jury rigs in which some
part of the system is redesigned and rebuilt to restore partial
or complete functionality.

There are a number of considerations that bear on the choice
of procedure implementation. For example, if fast execution of a
procedure is required then learning is the preferred route. If a
set of procedures is essentially open, then one must rely on the
technician’s ability to compose them. Unfortunately, knowing
that a procedure is a maintenance procedure or even knowing which
of the tasks described above it supports does not do much to
inform these implementation decisions.

Fault Isolation

Troubleshooting skills are of major concern in most
maintenance-training communities. It is therefore not surprising
that these skills have received considerable attention in the
psychological literature. What is surprising is that a fairly
coherent picture of skilled troubleshooting has emerged from
these studies. I have discussed this picture in some detail
earlier (Halff and Spector, 1991), and will only summarize here.

Troubleshooting, according to this picture, is a problem in a
space based on the mental model described above in "Mental Models
of Equipment," where devices are viewed as networks of
components. This model is configured with one or more components
in fault modes, and the troubleshooting problem is to devise a
sequence of actions that isolate and repair the faulted
components. The actions in the solution sequence can be defined
according to the following possibilities.

1. Observe the outputs of some components.

2. Observe the states of some components (e.g., LEDs).

39

]

3. Manipulate the states of some components (e.g.,
switches).

4. Replace certain components.

Costs, in terms of time and money, can be assessed for each of
these actions.

The psychology of troubleshooting, conforms (fortunately) to
the general picture of skilled problem solving that has arisen in
recent years. 1In particular, troubleshooting skills are viewed
as a mix of strong, knowledge-based methods and weak,
context-independent skills.

Knowledge based methods are manifested as associations
between familiar patterns of observations and troubleshooting
actions. To take an example from Hunt and Rouse (1984),

IF the engine will not start and the starter motor is turning and the
battery is strong,

THEN check the gas gauge.

Context free methods are manifested as analysis of the
topology of the device to determine which troubleshooting actions
discriminate among a set of plausible or hypothetical faults.
Again, taking an example from Rouse and Hunt,

IF the output of X is bad and X depends on Y and 2 and, Y is known to be
working,

THEN check 2.

In addition to these two selection principles,
troubleshooters are also guided by the information-theoretic
value of potential observations, and will choose those that
provide the greatest reduction in uncertainty (Towne, Johnson, &
Corwin, 1983).

Formal competence models of the troubleshooting process are
available (Hunt and Rouse, 1984; Towne, Johnson, and Corwin,
1983) and are eminently suitable for use in training (Towne and
Munro, 1988; Towne, Munro, Pizzini, Coller, and Wogulis, 1990).
What is not available at this time are valid performance models
of troubleshooting. For example, it is obvious that skilled
troubleshooters do not compute the information associated with
each potential observation in order to choose among them.
Rather, they probably use heuristics based on a structured view
of the device topology. Sorely needed is a theory of how
technicians arrive at this structured view, and how they
interpret the view in the course of choosing observations.

40

To summarize this discussion, we have identified three
important aspects of the cognition of maintenance skills. A
mental model the equipment serves to support virtually all
maintenance tasks. This model represents the topology of the
device and the behavior of individual components, and it supports
causal or qualitative reasoning about the device’s behavior.
Procedures are pervasive elements of most maintenance tasks.
However, the content of these procedures and their implementation
vary so much from one maintenance domain to another that little
can be said about the nature of maintenance procedures per se. A
third component of the psychology of maintenance is the process
of fault isolation or troubleshooting. Models of this process
conform to general notions of skilled problem solving as a
combination of weak and strong methods. Precise, formal models
of the troubleshooting process are available, but they fail to
capture some of the details of implementation constraints imposed
by human information-processing limits.

Instruction

We turn now to the instruction appropriate for promoting the
acquisition of the maintenance skills described above.
Instruction is dictated not only by the instructional objectives
outlined above but also by the nature of the learning process and
by ad hoc circumstances governing the learning context.
Nonetheless, it is useful to think in terms of a curriculum that
corresponds directly to the structure of the instructional
objectives.

Orientation to the Equipment

In this part we consider what instruction is appropriate to
convey a mental model of the equipment being maintained. Above,
we delineated the main components of such a model: the device’s
function, including its operation, and the device’s structure,
including its topology and component behavior.

1. Device Function and Operation. Device function can be
conveyed to students in any number of ways.

The device can be identified as one of a larger class of
devices whose functions are known to the student. What
distinguishes the device from others of its class should also be
made known to the student.

The device, or a model thereof, can be shown in operation,
preferably under student control, and preferably in such a way as
to cover all of the major operating states of the machine.

2. Device Structure: Topology and Component Behavior. As
with device function, any aspect of a device’s structure can be
identified as member of a larger class with the same structural

41

characteristics. Of more interest are mechanisms for directly
conveying device structure. Traditional methods rely on paper
documentation and consist, usually, of a block diagram, a
narrative description, and data on the specifications of each
component. More recently, computer simulations such as STEAMER
(Hollan, Hutchins, and Weitzman, 1984), have offered a number of
benefits not to be found in conventional documentation. Among
these are:

a. support for practice of causal reasoning,

Students can be given partial information about the state
of the device and asked to predict some aspect of device
state not evident in the display. Both the sequence of
exercises of this sort and the structure of feedback can
be based on the structure of the device itself.

b. exhibition of complex component functions,

Students can be shown (interactively) how a component or
subsystem reacts to different combinations of inputs and
changes in inputs. For example, students can be given
some of the inputs to a component and asked how the
others might be set to put the component in a particular
state.

c. exhibition of component, subsystem, and device behavior
under any normal or faulted operating states,

Simulations of the sort described can be designed to
reflect the conceptual structure of the device. Thus,
for example, components that are structurally related
can be shown in the same display even though they are
physically separate in the equipment itself.

d. association of the mental model’s components with their
imaginal manifestations,

Video and other devices can be exhibited in connection
with their conceptual counterparts in a simulation. For
example, students can be given short drills on the sounds
or oscilloscope patterns characteristic of particular
states of a device. Other exercises (e.g., Li & Merrill,
1990) can be used to teach the physical locations of a
device’s components.

e. presentation of mnemonics and other mechanisms for
cognitive support of learning.

Symbolic depictions of device components can be designed
to reflect their state or function. The traditional use

42

of icons in electronic diagrams is an obvious example of
this mechanism.

Procedures

In the subsection above entitled "Cognitive Components of
Maintenance Skills - Procedures," we delineated three different
ways of implementing procedures:

° directly from the technician’s procedural knowledge,
° from interpretation of a job aid, or

° through composition as the result of problem-solving
activity.

We also noted that, however a procedure is implemented,
attention must be paid to the control structure of the procedure,
its function and its perceptual-motor aspects. Because our
characterization of maintenance procedures cannot be much more
specific than this, little can be said about instructional
methods. The following training suggestions are nothing more
than general recommendations for procedure training.

1. Procedural Knowledge. Certain well-known prescriptions
apply to the teaching of procedures (in the sense of helping the
student achieve unaided execution of the procedure).

a. Depict the control structure of the procedure along with
its function, and the constraints that the function
imposes on the control structure.

b. Make intermediate results available to students during
training.

c. Provide practice in the procedure under conditions that
preserve a consistent mapping of stimulus to response.

d. Provide examples that span the space of choices that must
be made in executing the procedure.

e. Provide enough practice with real equipment or
high-fidelity simulators to ensure mastery of the
sensory-motor aspects of the target procedures.

If a procedure has more than one choice point, make sure the
student is able to make each choice in isolation of the others.

2. Interpretation Skills. Training technicians to interpret
written instructions is (or should be) more a matter of designing
the instructions than training the students. The task of
interpreting instructions is partly one of inducing the procedure

43

from examples and partly one of deducing the procedure from a
written description.

a. Devise a procedure for interpreting the set of job aids
used on the job and teach this procedure using the
principles suggested above for Procedural Knowledge. The
procedure should function to find the right job aid for
the occasion and properly interpret the aid.

3. Problem Solving Skills. Problem solving, of the sort
discussed above in "Procedures" is almost always taught on the
job, where most of the opportunities for training of this sort
occur. Acquisition of problem solving skills can be promoted in
school in several ways.

a. Since effective problem solving depends crucially on a
technician’s facility with the mental model of the system
being maintained, extensive practice with this model
should enhance her ability to create effective procedures
in unanticipated situations.

b. Case study, at least by default, is the preferred method
for promoting problem-solving expertise. In many
situations, it should not be difficult to import this
method from the job site to the school room by recording
and packaging selected cases.

c. Certain general problem-solving techniques (e.g.,
decision theory, heuristic reasoning) seem to describe
effective solutions so well that they bear considerable
promise in instruction. Configuring these methods to
difficult maintenance problems might yield substantial
benefit.

Troubleshooting

Troubleshooting is generally taught through a series of
troubleshooting exercises, and practice will no doubt be the
backbone of the most effective methods of troubleshooting
training. This said, what needs to be specified are the sequence
of problems to be used in troubleshooting practice and the
practice environment.

1. Problem Selection in Troubleshooting Practice.
Consistent with the discussion in the above subsection entitled
"Fault Isolation," the aim of troubleshooting practice is to
build both knowledge-based and context-independent skills. This
goal suggests that certain problems, which exercise neither type
of skill, should be excluded from consideration in practice sets,
and that other problems should be included. In Halff et al.,
(1991), I suggest a set of simplifying restrictions that exclude
non~instructive problems. To quote from that paper,

44

In typical training situations, certain simplifying assumptions govern
the behavior of the equipment.

(-]

Every malfunction is the result of a single faulted component,
although in real equipment multiple faults often occur.

Faults can be characterized as a change in the state or possible
states of a component, not in the topology of the equipment,
although in real equipment faults can change the nature of the
connections among components.

Neither testing nor replacing a component will fault another
component, although in real equipment a faulted component can
protect another component from damage.

Finally, we assume that there are no faulty replacements, even
though real world technicians will on occasion return a faulted
component to inventory.

In addition to these exclusion criteria, the instructional
objectives delineated in "Fault Isolation" suggest that certain
types of faults should always be included in troubleshooting
practice.

a.

2.

Mission critical malfunctions should be included so that
students learn the pattern of observations associated
with these faults.

Principles of discrimination learning dictate that close
relatives of mission critical malfunctions should be
included in practice sets. These close relatives

are those whose patterns closely match those of the
corresponding mission-critical faults.

To exercise context-free troubleshooting skills, students
should be given a set of structure spanning malfunctions.
By this, I mean that the faults should be chosen that
allow for application of all context-independent
strategies.

The Practice Environment. The practice environment is as

critical to successful training as is the selection of problems.
Many general principles of procedure learning also apply to
troubleshooting practice.

a.

Density of practice is important. Simulators should be
used and designed to engage students in as many practice
problems as possible.

Hidden cognitive operations should be made evident to the
student. Thus, the student should be forced to track,
actively or passively, the results of each
troubleshooting action. Typically this means he should
identify which faults are eliminated by each action.

45

c. Strategic information should be made evident to the
student. This can be accomplished though the advice and
critiques of a human or machine tutor.

Curricular Issues

The suggestions made above for meeting general instructional
objectives present a significant challenge to curriculum design.
The objectives themselves are interrelated and so it seems that
the curriculum should reflect this interrelatedness. Any of the
instructional paradigms that address the objectives can be
configured in many different ways. Different components can be
chosen for exercises, different degrees of support can be
provided. The division of effort between student(s) and
instructor can vary. It may therefore be of some use to recall a
few general principles that have guided curriculum development.

1. Lesson Structure. The course should be divided into
discernable lessons and/or other recognizable units. The goals
of each lesson and the methods used to achieve those goals should
be made clear to students.

2. Teach Prerequisites First. The subskills or
prerequisites of a skill should be addressed in training before
the skill itself. Thus, for example, since troubleshooting
involves certain inferences to be made from a mental model of the
device, exercises addressing these inferences should be provided
prior to troubleshooting training.

3. Whole- and Part- Task Training. There are two approaches
to training tasks that involve distinct subtasks. Part-task
training calls for practice of the subtasks in isolation. The
whole-task approach allows students to practice the entire task
using external cognitive support for subtasks that have not yet
been mastered. Maintenance training can, and should employ both
methods. For example, whole task training in diagnostic
maintenance can focus on replacement procedures by allowing an
expert to walk the student through the troubleshooting stage of a
repair. Part-task training in troubleshooting itself may be of
some benefit because eliminating non-essential tasks such as
equipment disassembly can increase the density of practice.

4. Completeness. When procedures or problem-solving skills
involve branching, exercises should be provided that address all
significant variation in input to these procedures. Thus,
students should be given troubleshooting exercises that introduce
them to all significant topological patterns in the structure of
the equipment.

S. Fading. Any exercise can be configured with a variety of
cognitive supports. Among these are techniques that exhibit the
correct moves to the student, those that provide structural aids

46

such as qualitative simulation, providing intermediate steps such
as subgoals, and many others. Students should begin working in
heavily supported environments and should graduate to
successively less heavily supported environments until they are
practicing in an environment close or identical to the actual
task environment.

6. Review. 01ld material should be reviewed whon new
material is introduced. Review functions not only to space
practice but also to show students how to discriminate the
situations appropriate for the application of old and new skill.

7. The Trials Effect. 8Skill increases with the amount of
practice.

Summary

Before turning to the implementation of maintenance training
in interactive media, it is worthwhile to summarize the above
discussion. Our review of the cognitive foundations of skilled
maintenance reveals three distinct instructional objectives.

Students should be become adept at reasoning from a mental
model of the equipment being maintained. Training in this aspect
of maintenance can be based on a qualitative simulation of the
equipment. Appropriate exercises can teach students how the
device functions and how its operating procedures can be cast in
terms of the mental model. Other exercises can teach students to
make inferences and predictions from the structure of the model.

Students must learn to execute procedures from memory, from
job aids or by actually creating the procedures themselves. Each
of these cases requires somewhat different instructional
approaches. In general, procedures are learned through practice.
They should be presented and practiced in such a way that their
structure is clear and that the constraints of structure on
function are evident. When a job aid is involved, students
should learn procedures for using the aid. Case studies are
generally used for instruction in procedures that are derived
from the student’s problem-solving activities.

Instruction in troubleshooting consists of a sequence of
problems in which the student must isolate the fault(s) in a
device or simulated device. Problems should be chosen in such a
way as to promote the acquisition of knowledge-based and
context~-independent skills. Overly complex problems should be
avoided. Problems should be included that address
mission-critical faults and their close relatives. Also included
should be problems that span the possible structural patterns of
the device. The environment for troubleshooting practice should
be one that makes evident and promotes the reasoning processes
needed for successful troubleshooting. Thus, it should provide

47

for explicit tracking of hypotheses and for commentary on
potential troubleshooting actions.

Computer-Based Maintenance Training

Our comments thus far have been largely free of any mention
of instructional media. The traditional media for maintenance
training have been lecture and simulation. More recently,
computers and interactive video have played a role. 1In this part
we discuss the possibilities for computer-based, interactive
maintenance training. Our first concern is with automation of
the training itself. We then turn our attention to automation of
the instructional development process.

Automating the Training Process

Interactive maintenance training (e.g., Towne, 1986) has
generally been restricted to high-fidelity simulators. That is,
simulators that physically resemble the equipment being
maintained. This physical resemblance is implemented either with
three-dimensional mockups, with film, and more recently, with
video. Instruction usually consists of pure troubleshooting
exercises, other aspects of maintenance training being covered by
more traditional media.

Recent developments in instructional technology and the
design philosophy described above suggest a different approach to
interactive maintenance training systems. This new approach
would differ from existing methods in several respects.

1. Because of the primacy of mental models in effective
maintenance, qualitative simulation with an explicit
representation of a mental model would play a primary
role in maintenance training.

2. The scope of interactive instruction could be expanded to
include instruction in reasoning from a mental model and
procedure training (in addition to troubleshooting
training).

3. Functions such as critiques and coaching now often
removed from the practice context would be incorporated
into that context.

4. Depictions of actual equipment (using video, sound, and
other means) would be used for the explicit purpose of
associating elements of the mental model with their
real-world counterparts.

The remainder of this part contains some suggestions for
implementing this approach.

48

The Infrastructure of Interactive Maintenance Training

A strong recommendation of the approach advocated here is the
development of an infrastructure representing the knowledge to be
acquired during training. Instructional methods for conveying
this knowledge employ the infrastructure as a source of
instructional material. We define the infrastructure’s main
components in this part and make some suggestions for its
instructional use in the next part.

1. oQualitative Simulation. By qualitative simulation, I
mean a presentation of a device’s function and structure in terms
of the kind of mental mcdel described above in "Mental Models of
Equipment." This presentation could be implemented using a
program such as the Intelligent Maintenance Training Simulator
(IMTS) (Towne and Munro, 1988; Towne et al., 1990) where the
mechanics of the mental model form the basis of the simulation
program itself. Alternatively, the presentation could be based on
some other computational approach such as the mathematical model
of a steam plant used in STEAMER (Hollan, Hutchins, and Weitzman,
1984). What is important for our purposes is that the simulation
appear to the student in the form of a mental model. This means
that:

a. the topology of the device is reflected in the display by
showing the connections among components;

b. the conceptual structure of the device should be
reflected in the simulation by appropriate grouping of
systems and subsystems;

c. the state of each component can be made evident to the
student through the use of color, icons, or other
mechanisms;

d. changes in each components inputs and outputs can be made
evident to the student;

e. the student should have full access to the model through
simulated controls, indicators, test points, and
replacement operatiors; and

f. provision should be made for the instructional system to
configure the simulation in any normal or faulted mode.

2. Physical Simulation. As is mentioned above in the
subsections entitled "Mental Models of Equipment" and
"Orientation to the Equipment," maintenar.ce concepts and
procedures have imaginal as well as conceptual aspects. The turn
to qualitative simulation does not, therefore, imply that
training should not treat the physical characteristics of the
equipment or procedures. Computer-based training treats these

49

characteristics using video, sound, and other such devices.

Needed, therefore, in addition to a qualitative simulation that
reflects the conceptual structure of the eguipment is a physical
simulation that reflects the actual appearance of the equipment.
Two considerations drive the design of this physical simulation.

First, physical depictions of the equipment must be tied to
corresponding qualitative depictions. That is, each component
should be shown using a symbolic display (such as an icon) in the
qualitative simulation, and an image. Observations and
manipulations of the qualitative simulation should have
corresponding illustrations of the physical equipment itself.

Second, just as the conceptual structure of the equipment is
reflected in the qualitative simulation, its physical structure
should be represented in its physical simulation. Views of the
equipment’s main assemblies and subassemblies should be
constructed to reflect the access paths to particular components.
The means for simulating assembly and disassembly of the
equipment should be provided.

3. Conveying Functionality. Along with structural and
physical aspects of maintenance training, we have pointed out the
importance of information relating the function of devices.
Technicians can rely on functional information—about the function
of the device itself and about the function of its subsystems and
components—in most or all of the reasoning tasks required for
maintenance.

Functional knowledge of a device, its subsystems, and its
components is used primarily in maintenance to determine whether
or not the device, subsystem, or component is functioning
properly. This implies that available within the qualitative
simulation should be a characterization of the function of each
element so that students can be asked or informed about the
functional status of the element. Such a characterization could
describe how the system functions under normal operating
conditions, indicate the range of acceptable outputs, and contain
contextual information such as the elements with immediate
connection to the one in question.

For other reasoning tasks, the design or goal structure of
the equipment may be of use. 1If for example, a subsystem cannot
be restored to a fully operational state, the maintainer can use
information on the purpose of the subsystem to decide on the most
effective partial repair. Material should be incorporated into
the training system that indicates the role of each component and
subsystem in the goal structure(s) employing that component or
subsystem.

4. Representing Procedures. Another component in the
infrastructure of automated maintenance training is the

50

computational representation of maintenance procedures. From the
discussion in "Cognitive Components of Maintenance Skills -
Procedures" above, we can derive the following elements:

a. a description of the procedure’s control structure, that
is, its steps and choice points,

b. how the procedure employs and manipulates the mental and
physical models of the device, and

c. the functionality or goal structure of the procedure.

It almost goes without saying that the representation should
be executable. That is, an interpreter should be constructed
that can execute the procedure in conjunction with a particular
configuration of the mental and physical model.

Any number of formalisms can be used to satisfy these
requirements. Perhaps the leading contenders are ATN grammars,
production systems, and and-or graphs. The use of one formalism
does not exclude others, and in some cases mixtures,
combinations, and redundant representations may be useful.

5. Troubleshooting Expertise. Effective troubleshooting
practice in both automated and traditional environments depends
critically on the availability of troubleshooting expertise. For
the purposes of automated training, this troubleshooting expert
should reflect the nature of human troubleshooting skills. Thus
something on the order of Hunt and Rouse’s (1984) fuzzy
rule-based model would be appropriate. The essential features of
this model are rules that implement both knowledge-based and
context-free troubleshooting methods and an explicit
representation of the course of the troubleshooting process.
Thus, the model could be used to exhibit each step in
troubleshooting, its rationale for taking the step, and changes
to the problem state after the step has been taken. Rouse and
Hunt’s model suffers, along with others, from a psychologically
unrealistic model of the evaluation of the utility of alternative
observations and a simplified mental model of the equipment. It
nonetheless contains the major features of an instructionally
useful model for troubleshooting expertise.

Instructional Methods

With at least a vague conception of the infrastructure for
interactive maintenance training, we can be more specific about
the instructional paradigms and curricula. A top-level approach
to curriculum design might divide the course into three parts,
corresponding to the three main instructional objectives
described in earlier subsections entitled "Cognitive Components
of Maintenance Skills" and "Instruction," and also, incidentally,

51

reflecting the structure of more traditional maintenance
training.

Some specifics of each major course part are given below. In
treating each part, we briefly describe some of the exercises
that might be used, and we provide guidelines for curriculum
design within each part.

1. Teaching a Mental Model.

a. Physical and Conceptual Structure. Students are shown
images of the physical equipment and asked to identify
individual components, their function, and their
immediate connections.

b. Causal Reasoning. Students are given information about
all inputs to a component or subsystem and required to
predict the state of the component or subsystem, its
outputs under normal operating conditions, and its
outputs in each possible fault mode.

c. Functional Reasoning (a). Students are shown some of the
inputs to an element of the device and asked how its
other inputs must be set in order to achieve a desired
function or state.

d. Functional Reasoning (b). Students are shown the actual
outputs and inputs to an element and asked to determine
whether or not the element is faulted.

e. Physical and Conceptual Appearance. Students are asked
to discriminate among component states on the basis of
some physical depiction of those states.

The exact sequence of these exercises should be designed to
reflect and convey the overall structure of the equipment. 1In
the typical case, where the equipment can be hierarchically
decomposed, the exercises can traverse this decomposition in a
depth-first fashion so that students learn to reason about a
subsystem immediately after learning to reason about each of its
components.

These exercises should also be implemented with a view to
whole-task training. Many if not all of them could be embedded
in mini-troubleshooting problems in order to illustrate the
application of qualitative reasoning to troubleshooting.

2. Teaching Procedures.

a. Operation. Students are required to perform certain
operational functions using both a physical and
conceptual simulator. That is, each step in the

52

procedure must be executed within the physical simulator
and the conceptual simulator. For complex procedures the
goal structure of the procedure should be tracked during
procedure execution.

b. Calibration. Students work with a physical simulation of
the device to practice required calibration and
adjustment tasks. A conceptual simulation of the system
being adjusted or calibrated shows relations among the
components involved in the process.

c. Testing. Students are required to carry out fixed
testing procedures on a physical simulation of the
equipment. A conceptual simulation of the components
being tested is used to exhibit or query the student on
the states of these components.

d. Access and Disassembly. Students are given the task of
gaining access to a particular component. They use a
physical simulation of the device to practice the task.
A matching conceptual simulation shows which components
are accessible at each point in the procedure.

Curriculum design for procedure training is difficult because
of subtask relations among procedures often violate the natural
coherence relations. The best recommendation to be made in this
regard is that subprocedures should be taught before their
procedures and that related procedures should be taught in
succession. Thus, for example, if a particular test requires
disassembly of the equipment, the disassembly procedure should be
addressed before the testing procedure. Furthermore, all
disassembly procedures should be submitted to a structural
analysis that reveals how different branches provide access to
different components. The results of this analysis should be
reflected in the curriculum so that students are taught how to
access (structurally) neighboring components together.

e. Procedure Selection and Use of Job Aids. Students are
asked to identify the procedures needed to deal with
particular situations and to select any appropriate job
aids. Support is provided for this exercise in the form
of subgoals and intermediate steps needed to arrive at
the proper selection.

Curriculum design for job aids is (or should be) a simpler
matter since the curriculum can be designed to reflect the
structure of the aids themselves. Even if the aids are not
designed systematically, the instructional designer should
develop a procedure for selecting the correct aid and design the
curriculum to reflect the structure of that procedure.

53

Considerations pertinent to whole-task training should be
given to all (a-e) of the above methods for procedure training.
Some of the procedures addressed by this training constitute
whole tasks in an of themselves. Others (e.g., disassembly) are
enlisted in the service of superordinate tasks. i ole task
training can be partially implemented using an apprentice model
in which the student observes an automated expert . i iged in some
difficult task (say troubleshooting) and practices component
procedures, testing, for example, as they arise in the course of
the task.

f. Redesign and Jury Rigs. Students are provided with
conceptilal simulations of tasks requiring complete or
partial reconstruction of the equipment. For example,
students could be required to restore as much
functionality as possible with a limited inventory of
spare parts or with other constraints on the
reconstruction.

Lessons employing exercises of Type f should be arranged to
traverse the major systems and subsystems in a systematic (depth
first) fashion.

3. Teaching Troubleshooting.

a. Troubleshooting. Students are provided with a conceptual
simulation containing a single faulted component. At
each point in the troubleshooting exercise, students
would choose an action and exhibit the consequences of
the action. The exercise could take many forms. For
example, students might be prompted to select actions
diagnostic of a particular faults or sets of faults.
Other forms of troubleshooting practice can be found in
Brown, Burton, and de Kleer (1982).

b. Reverse Troubleshooting. Students are told that a
particular component is faulted. They are required to
predict the results of certain observations based on this
information. Causal reasoning patterns can be elicited
or exhibited during the course of these exercises.

c. Case Studies. Students could be given real case studies
of intractable troubleshooting problems. Computer
support could be provided for collaborative problem
solving and for peer and expert critiques of proposed
solutions.

A typical troubleshooting curriculum might have the following
lessons.

a. A set of reverse troubleshooting and troubleshooting
problems that cover the major topological patterns found

54

in the device. Each pattern would be addressed first by
reverse troubleshooting exercises and then by
troubleshooting exercises.

b. A set of reverse troubleshooting and troubleshooting
problems that cover the equipment’s mission-critical
faults and their nearest neighbor. Students would first
reverse troubleshoot each major fault and its neighbor
and then troubleshoot the pair.

c. A repetition of Lesson 1 without reverse troubleshooting.
d. A repetition of Lesson 2 without reverse troubleshooting.
e. A mixture of Lessons 3 and 4.

Reverse troubleshooting in this curriculum plays the role of
a cognitive support which is gradually faded from the curriculum.
Other cognitive supports (e.g. external hypothesis lists) should
also be withdrawn in the last lesson.

Instructional Support

In implementing computer-based training it is important not
to lose sight of certain critical functions normally provided by
instructors in traditional classroom settings. Of particular
concern are functions that establish overall goals, motivation,
and coherence to the effort. Instruction of this type is related
to what Gagné and Merrill (1990) call the enterprise addressed by
the instruction. Of equal importance are the tutoring and
coaching functions whereby instruction is adapted to the
moment-to-moment needs of individual students.

1. Enterprise-Oriented Instruction. Traditional classroom
methods may play a role in establishing a student’s sense of the
maintenance enterprise, but in interactive environments,
enterprise-oriented instruction should perhaps be viewed more in
terms of arts and entertainment (taken seriously) than
traditional instructional methods. Thus, mechanisms such as
video clips, computer games, and special effects may be
appropriate vehicles for conveying the overall significance of
maintenance skills.

2. Tutoring in Interactive Environments. Computer based
tutors and coaches have been the subject of several research
efforts over the past decade or two (Polson and Richardson, 1988;
Psotka, Massey, and Mutter, 1988; Sleeman and Brown, 1982;
Wenger, 1987). Some tutoring capabilities have been offered in
maintenance training (e.g., Brown, Burton, and de Kleer, 1982;
Towne and Munro, 1988; Towne et al., 1990), and some general
techniques have been developed that might have a place in
maintenance training. Some approaches to computer-based tutoring

55

and coaching (e.g., Anderson, Boyle, and Reiser, 1985) attempt to
derive a student’s particular understanding (in an
information-processing sense) of an exercise (including the
nature of impasses and misconceptions) and to direct advice to
that particular understanding. Others (e.g., Burton and Brown,
1982) make a more global evaluation and direct advice to the
student whenever specific deviations from optimal behavior are
observed. Both types are appropriate to the type of maintenance
training suggested here. Since the former requires considerable
investigation of intermediate states of learning, the latter are
more easily implemented.

Automating the Instructional Design Process

The development of interactive maintenance training of the
sort described above would, using current programming and
authoring technology, be an ambitious undertaking indeed. 1t is
natural, therefore, to ask how much of the instructional
development task could be automated. The ideal situation would
be a computer program that could create the entire course out of
existing documentation and other material. Unfortunately, such a
program is now and probably always will be beyond us.
Nonetheless, one can see the opportunity for considerable
computational assistance in the course of creating interactive
maintenance courses of the type considered here. What follows is
a treatment of each of the major components of the training
system described above with a view to determining which aspects
of its development are amenable to automation.

Mental and Physical Simulations

Since the basis of instruction on the approach described here
comprises mental and physical representations of the equipment to
be maintained, we should first ask what sorts of computational
machinery is available for these representations.

Representation of qualitative reasoning structures and
practices has received considerable attention in the literature
and a number of computational approaches are available for
representing mental models. 1In addition, as was mentioned above,
it may be possible to use a quantitative model of the equipment
and provide that mathematical model with the conceptual interface
of a mental model.

However, a single shortcoming of available mechanisms for
representing mental models is the lack of an approach to the
problem of chunking. To my knowledge all current approaches
either model the equipment as a flat network of components or
rely on the model’s designer to provide a hierarchical
decomposition. Lacking any progress in automatic chunking of
mental models, the division of a device into meaningful systems

56

and subsystems will remain the responsibility of the
instructional developer.

Computer representation of the physical aspects of a device
appear to be less of a problem than representation of its
conceptual structure. The maintenance training community has
considerable experience with what is known as "2-D simulation,”
and a number of systems appear to offer adequate power, typically
through the use of videodisc and computer graphics. It should be
noted that little in the way of knowledge representation is
provided with these systems, thus precluding any reasoning about
the physical structure of the device.

Perhaps the most complete and interesting effort on modeling
of equipment for maintenance training is the IMTS (Towne & Munro,
1988; Towne et al., 1990). Developers using the IMTS can create
a qualitative simulation of a device along the lines suggested in
the previous subsection entitled "Cognitive Components of
Maintenance Skills." 1In addition, the IMTS provides an interface
to an older type of training simulator, the General Maintenance
Training Simulator (GMTS) (Towne, 1986), that provides a physical
representation of the device under maintenance. Thus, the
combination of these two devices offers all the representational
power that is needed for a wide range of devices.

Representation of Procedures

Like devices, the representation of procedures has attracted
considerable attention in the cognitive science community. As
was mentioned above a number of devices are available for
representing procedures. The bad news, in connection with
maintenance, is that since the range of maintenance procedures is
so broad, no one has found it profitable to provide a system
devoted to the representation of maintenance procedures. The
good news, however, is that the hardest part of developing such a
system would probably be design of the knowledge structures that
it employs and manipulates. These knowledge structures are
nothing more than the mental and physical models, which puts the
prospect of a viable system for representing maintenance
procedures well within reach.

Building an Automated Troubleshooting Sxpert

Recall that the automated troubleshooting expert described in
this conception of maintenance training (see subsection entitled
"The Infrastructure of Interactive Maintenance Training") must
possess both context independent and context-specific skills.

The context independent skills, by definition, will be common to
all maintenance courses and therefore need not concern the
developer of any particular course. Knowledge-based,
context-specific strategies vary from equipment to equipment and
do therefore concern instructional developers. The best approach

57

to deriving knowledge-based troubleshooting skills is a machine
learning mechanism that could derive them automatically in
simulated troubleshooting exercises. Since the creation of such
a mechanism would be a major research project in its own

right, for practical purposes, knowledge-based methods would have
to be formulated by subject matter experts for each equipment.

Exercise and Curriculum Development

Computers show considerable promise as devices for generating
curricula of exercises and examples. The instructional approach
described above relies heavily on such curricula, so that it
behooves us to ask how computers might assist in their
generation. Needed are

1. a template for the curriculum itself or part of the
curriculum to be generated by the computer,

2. frames for representing exercises in such a way that they
can be fit to the template, and

3. a search mechanism for filling the template with
particular exercises.

In the absence of precise specifications for any of the
lessons suggested above, curriculum templates would embody the
curriculum suggestions in the above subsection entitled
“Instructional Methods™ using a special-purpose programming
language. The frames for representing individual exercises might
contain slots for content, procedure, prerequisites, subtasks,
and cognitive support. The search mechanism is essentially an
implementation problem and need not concern us here.

Instructional Support

Recall from the previous subsection entitled "Automating the
Training Process - Instructional Support" our concern with two
areas of instructional support for the training activities
suggested here: enterprise-oriented instruction that provides
coherence, motivation, and a sense of the overall significance of
the maintenance task; and tutorial functions that provide advice
appropriate to a student’s moment-to-moment situation during the
course of an exercise.

The automated generation of enterprise-oriented instruction
is, to my mind, about as feasible as the automated generation of
academy-award movies or best-selling novels. Thus, any system
that serves as a vehicle for maintenance training should provide
for the inclusion of human-generated materials of the sort needed
to maintain the cognitive integrity of the enterprise under
instruction.

58

By contrast, it is entirely feasible to provide for some
forms of automated tutoring with no extra effort on the
instructional developers part. A case in point is the IMTS,
which evaluates troubleshooting action against an optimal
troubleshooting model so that it can suggest more fruitful
approaches at appropriate times. The optimal model used by IMTS
suffers from the fact that it is more of a competence model than
a performance model, and no attempt is made within IMTS to derive
an information-processing account of student actions. However, I
see no intrinsic difficulties in improving the tutor along these
or any of a number of other lines. Some of these improvements,
such as the use of empirical bug catalogs in diagnosing student
problems, might entail considerable extra effort on the
developer’s part. Others, however, such as a more
psychologically valid method for choosing troubleshooting
actions, would require very little extra effort on the
developer’s part.

Summary

We can summarize the foregoing discussion by describing the
minimal set of tasks that would fall to an instructional
developer in her interactions with a fully automated
instructional design assistant for maintenance training.

The designer would provide a complete, formal description of
the device. This description would consist of:

1. models of each type of component used in the device,
2. a matrix of connections among the components,

3. a structural breakdown of the device into its constituent
systems and subsystems, and

4. a functional breakdown of the device denoting the purpose
of each element.

In addition the developer would provide the materials needed
for a physical model of the device, including,

1. a physical breakdown of the device denoting overviews,
detail views, and sub-assemblies,

2. imagery (in appropriate media) for depicting all views of
the device and its elements in all possible states.

Also needed for development of the infrastructure would be a
formal representation of all maintenance procedures addressed in
the course of instruction. This representation would denote the
control structure of the data so as to permit the simulation of
any procedure in the context of a mental and physical models

59

described above. Also represented would be the goal structure of
the procedure in a way that would show the relation of function
to structure.

A final component of the infrastructure is the
troubleshooting expert. As was mentioned above, its
context-independent methods are not course specific, but the
developer would need to supply the rules characterizing
knowledge-based troubleshooting methods for the equipment
addressed in each course.

With these infrastructure specifications, the automated
design aid would create fully functional mental and physical
models of the system. These models could be used to carry out
causal reasoning and to simulate the execution of any maintenance
action or procedure.

To fill the curriculum, the instructional developer would
need to write templates for the generation of exercises in each
lesson and would probably need to edit the results of the
generation procedure. She would also need to provide any
ancillary enterprise-oriented material such as video clips and
special effects. Finally, for some tutoring techniques, she
might need to provide a catalog of common student misconceptions
or mind bugs.

Conclusions

Summary

This discussion has been concerned with the major issues to
be faced in the development of interactive maintenance training.
A summary of those issues and our conclusions may help to orient
us to any overall lessons to be found in the discussion.

at is maintenance?

Maintenance is largely the collection of procedures needed to
_ operate, adjust, test, disassemble (and reassemble), and repair
equipment. Of particular importance are the specialized tasks
that constitute troubleshooting.

What knowledge and skills support proficiency in maintenance
tasks?

A major source of support for maintenance skills is a mental
model of the equipment to be maintained. This model describes
the equipments subsystems and components, its topology, its
functionality, and, through imagery, the physical manifestations
of these concepts.

60

Most maintenance skills are procedural in nature. Like other
procedures, maintenance procedures have a functional structure, a
control structure, and perceptual-motor (input-output)
components. Maintenance procedures can be learned; they can be
interpreted from job aids; or they can be created as the result
of problem-solving activities.

The specialized skills required for fault isolation rely
partly on context-independent reasoning from the device’s
topology and partly on knowledge-based methods or associations
between patterns of observations with troubleshooting actions.
In addition, skilled troubleshooters tend to chose the most
information-laden actions.

What is required in the way of instruction for maintenance?

Students need first to be taught how to reason from a mental
model of the equipment. This is best done through reasoning
exercises conducted within appropriate conceptual and physical
representations of the equipment.

Maintenance procedures are best taught through structured
practice. The practice regimes should make clear any
intermediate steps, the appropriate handling of choice points,
and the constraints imposed by function on the control structure
of the procedure. Where job aids are employed on the job,
procedures for using these aids should be developed and taught to
students. Problem-solving exercises should be included to
address procedures that students must invent on the job.

Troubleshooting is best taught through selected fault
isolation exercises. These exercises, in order to be
instructive, should be restricted to simple cases. Of particular
interest are mission-critical faults, their close neighbors, and
faults that illustrate the basic patterns of context-free
fault-isolation methods. Practice in troubleshooting should be
supported by exhibiting intermediate cognitive steps such a
tracking hypotheses about possible faults.

The curriculum structure of all exercises should be governed
by known principles of curriculum design. Relevant
considerations include the need for a lesson structure evident to
the student, the prerequisite structure of the curriculum, its
part-whole structure, the need to cover all important cases, the
role of cognitive support during learning, the role of review,
and the effects of repeated practice.

How_can maintenance training be implemented with interactive
media?

Two components are needed for maintenance training with
interactive media: an infrastructure representing the knowledge

61

to be conveyed, and an instructional system for conveying that
knowledge.

The major components of the infrastructure are a
computational form of the mental model of the equipment, a
corresponding physical model describing and depicting the
equipment’s physical characteristics, a functional model of the
equipment describing its design rationale, a computational
representation of all maintenance procedures to be taught, and an
automated troubleshooting expert.

These tools can be used to provide instruction addressing the
cognitive objectives of maintenance training. Exercises in
qualitative reasoning can be used to teach students the mental
model of the equipment, its physical manifestation, and its
relation to the equipment’s function. Procedure practice can be
provided in the context of both the mental and physical models so
that students can induce the mental structure of each procedure
and its physical concomitants. Troubleshooting practice can be
provided within the context of the mental model in such a way as
to exercise the major skills involved in both context-free and
knowledge-based troubleshooting.

Special care must be taken to provide instructional support
for the exercises provided by the system. Two forms of support
are of particular importance. Enterprise-oriented material
should be created to establish the motivation, coherence, and
significance of the course as a whole. In addition, an automated
tutor should be available to address students’ ongoing
instructional needs during the course of instruction.

What aspects of instructional development can be automated?

As a programming effort, the creation of a system of the type
described here is overwhelming. However, development tools
either exist or could be created to automate many of the
development chores. Among these tools are those for creating
mental and physical models of the equipment, for representing
procedures, and for building troubleshooting experts. Tools for
automatic creation of instruction are not available at this time,
however one can envision systems that would automatically
generate a number of the exercises required working from a
template or program for the curriculum. Recent work on
intelligent tutoring systems could be used to automate or
partially automate the development of tutoring and coaching
facilities.

Maintenance Training in Perspective

We have, heretofore, treated maintenance training as if it
were only of interest in and of itself. It is therefore fitting
to ask if any lessons emerge from this discussion about

62

maintenance training as one example of a training development
problem or domain. Two observations on this topic strike me as
being particularly important.

One of these observations concerns the uniqueness of
maintenance as a subject matter domain. Is maintenance a set of
highly specialized skills or is it simply a collection of skills
with no unique psychological properties. If the above
speculations are correct, the answer lies somewhere between these
two extremes.

Maintenance does have some unique characteristics. For one
thing, there is the pervasive support that a mental model brings
to virtually all maintenance activities. While it is true that
other endeavors are also supported by mental models, those
employed in maintenance are of a unique sort. The particular form
of mental models of equipment gives the instructional developer a
considerable advantage in defining these models for training
purposes. Also unigue to maintenance is the special nature of
troubleshooting. Context independent strategies for
troubleshooting are employed in many different situations, and
the form, at least, of knowledge-based strategies is constrained
by the nature of the troubleshooting task.

On the other hand, the many procedures that make up
maintenance tasks—procedures for repair, testing, etc — do not
seem to possess a common structure that is unique to maintenance.
The classification of a procedure as one used in maintenance is
almost completely uninformative as to its structure, its
implementation, or appropriate instructional strategies. All
that we have said about procedure training throughout this part
would apply equally well (or poorly) to any other domain.

A second observation concerns the focus of effort in
instructional development for maintenance training. One cannot
help but be struck by the amount of attention that must be given
to the infrastructure containing the knowledge to be taught. It
appears that this infrastructure is a powerful tool that enables
the facile construction of a number of different instructional
methods. It is knowledge, one way or another, that supports
skilled performance. Hence, it should be no surprise that
representing knowledge is a key element in skills training. The
foundational position of knowledge in the training system
supports the contention that successful instructional development
will depend mere on developing instructional methods within the
framework imposed by a common infrastructure than on developing a
number of infrastructures that must conform to a common set of
instructional methods. What gives us hope for the automated
development of maintenance training are the commonalities of
knowledge representation across different applications.

63

V. TEACHING TROUBLESHOOTING PROCEDURES (Halff)

Introduction

This section is an extension of the previous section for
automating the design and delivery of maintenance training. The
previous section gave a general characterization of maintenance
tasks, the instructional objectives of maintenance training,
maintenance training methods, and computer-based maintenance
training. My focus in that section was on three aspects of
computer-based maintenance training.

First, I suggested that a mental model of the equipment
constituted a fundamental objective of maintenance training.
Such a model represented effective knowledge of the device
including its behavior, structure, function, and appearance.
Essential to interactive maintenance training is a computer
representation of a mental model of the equipment. This computer
representation should consist of a qualitative simulation of the
equipment that supports reasoning about the behavior of the
equipment on the basis of component models and device topology,
and a physical simulation that provides experience with physical
observation and manipulation of the equipment.

Second, I suggested that all maintenance procedures to be
learned be given a formal representation that makes explicit
their control structure and function. These representations
should be tied to the gqualitative and physical simulations and
should be available for guided practice in the procedures.

Third, I proposed that recent findings concerning the nature
of skilled troubleshooting be incorporated into troubleshooting
training. My interest in this issue was limited to cases in
which the technician is required to formulate a troubleshooting
strategy based on device knowledge and general troubleshooting
principles. In those cases, which I call troubleshooting as
problem solving, skilled technicians tend to apply context-free
rules to local topological patterns found in the device, use
device~specific symptom-action associations, and choose
information-laden trouble-shooting actions. Of particular
importance to training is the possibility (indeed the reality) of
incorporating these results into a computer-based expert
troubleshooting model.

The proposals in the previous section concerning all three
issues suggested that an instructional infrastructure could be
built that would permit the easy implementation of a number of
computer-based instructional methods for maintenance training.

In the last part of that section, I outlined several such methods
and provided suggestions for assembling them into
maintenance-training curricula.

64

This section extends the ideas of the preceding in two
respects.

First, it focuses on procedure learning and, in particular,
on learning a class of standard troubleshooting procedures based
on fault trees. This class of methods reduces troubleshooting
tasks from the problem-solving activity described in the previous
section to one of implementing a general procedure to deal with
particular malfunctions. The data needed to implement the
procedure for a particular malfunction can be found in the
troubleshooting sections of the equipment’s technical
documentation.

Second, this section is more specific in that it examines, in
some detail, the training methods and requirements for one
particular troubleshooting procedure, namely, that of repairing
an Air Force T-38A aircraft that fails to start on the ground.
This procedure is described in USAF Series T-38A Aircraft
Organizational Maintenance (1989b). The training proposed below
should teach technicians a version of the procedure that is quite
close to the one described in the above manual. In what follows,
we will refer to the procedure as the no-start troubleshooting
procedure.

The instructional design approach adopted by the previous
section and by most other systematic instructional designs is
also reflected in this section. I first describe the content to
be taught, organizing the discussion around the no-start
troubleshooting procedure. I then derive a set of instructional
objectives. Finally, relying on recommendations from the
previous section, I draw out the major implications of our
analysis for instructional design and practice.

Instructional Content

The T-38A Starting System

Since the malfunction used as an example here is that of a
T-38A that fails to start, understanding the troubleshooting task
obviously requires some understanding of the starting system of
the T-38A. The following is a brief characterization of this
starting system taken from various sources (Kieras, 1988; USAF,
1989a, 1989b, 1990). Since I refer to these sources with some
frequency in the following, I have adopted, for the sake of
readability, the practices of calling USAF Series T-38A and
AT-38B Flight Manual (1989a) the "Flight Manual", USAF Series
T-38A Aircraft Organizational Maintenance (1989b) the "Engine
Conditioning Manual", and to USAF Series T-38A Aircraft
Organizational Maintenance (1990) the "Electrical Systems
Manual."

65

The T-38A is a two-engine jet aircraft. Each engine must be
started independently, and the right engine is started first. 1In
our discussion of the no-start troubleshooting procedure and
related issues, we will assume that the procedure addresses the
right engine. The treatment presented here would need some
modification for extension to a two-engine version.

Figure 3 is a grossly oversimplified schematic view of the
starting system of the T-38A. The reader is cautioned that the
picture presented in Figure 3 is far from complete and even
inaccurate in many ways. Not shown, for example, are most of the
systems servicing the left engine. 1In addition, components such
as the fuel pump and generator, that only function after the
engine has started, are not illustrated in Figure 3. Those
familiar with the aircraft will also note other inaccuracies
where I have deliberately simplified the system or inadvertently
made some incorrect assumption about the aircraft. Figure 3
does, however, contain every component that figures significantly
in the no-fault troubleshooting procedure, and it represents my
best assessment of the interconnections among these components.

Needed to start an engine are compressed air (used to
air-motor or rotate the engine), fuel, and ignition.

On the ground, air is supplied by an external compressor
attached through an air hose to a diverter valve on the aircraft.
The diverter valve is positioned by the ground crew to direct air
to the engine (left or right) being started. It is interesting
to note that an earlier version of the aircraft, described in the
Electrical Systems Manual and in Kieras (1988) had a mechanism
for automatically positioning this valve. Kieras pointed out
possible design problems with this automatic mechanism, but we
will resist the temptation to speculate on any connection between
his writing and subsequent modification of the aircraft.

Fuel for each engine is supplied through fuel lines
controlled by the throttle. An additional control over fuel flow
is an overspeed governor that is subject to leaks which can
impede the fuel needed for a normal start. A boost pump,
designed to supplement gravity feed at high altitudes, can be
used to purge air from the fuel line.

Ignition for each engine is supplied through two igniters, a
main engine igniter and an afterburner (AB) igniter. Each of
these igniters provides a train of sparks at a steady rate (3
sparks every 2 seconds).

The delivery of air, fuel, and ignition to the engine takes
place under partial control of an electrical starting system, the
main elements of which are shown in Figure 3. The pilot starts
the engine by depressing a starter switch and advancing the
throttle to its IDLE position. Depressing the starter switch

66

engages a timer and holding relay that, in turn, arms an ignition
circuit for about 30 seconds. Once the circuit is armed, moving
the throttle to IDLE closes a throttle cutoff switch and thereby
causes the igniters to fire. Advancing the throttle also
delivers fuel to the engine.

Extermal
Power
AC BUS
Fuel
R ENGINE START 8AB CONTROL
Boost Pum, o
A4
Fuel Shutoff Valva
Serves both engines
1 T &
™ Fuel mm.:{,., ENG IGN 2R
Transformaer oing Conrol | Relay AU:CST
Raectifier
Overspeed Govemor Throttie |
Swich 7’ + 7/
~] N
L]
Fuel Flow Indicaor| ' —— |
inverter
gron ' —— ‘
Pressurizing and Drain Vaive G tor _%J
-1 IGNITION INVERTER
Left
; Main ignher
engref |7 nor
Duct gt Battery & OC Bus
. seorve both
Diverter Valve ' E ‘ ongines
External Air
Starter Air 'AB igniter Piug MV
Duct Batwery
Starting A iniet Duct

Figure 3. Gross Simplification of the Components Involved in
the No~Start Troubleshooting Procedures.

67

A final important element in the starting system is the
delivery of electrical power to the igniters and control
circuits. DC Power is needed for the ignition control circuit
(i.e., the timer and holding relay); AC power is needed to fire
the ignition. On the ground, power can be supplied by two
sources: a (DC) battery in the aircraft and an external AC power
source. The battery is controlled by a switch which must be
turned off if external power is used. 1If the aircraft is started
under battery power, a static inverter is used to convert this
power to AC for the igniters. 1If the battery is not used to
supply DC power, a transformer-rectifier on the aircraft converts
AC power to DC. Also of importance to troubleshooting is the
fact that the static-inverter circuit powers a subset of the
right-engine cockpit instruments and, in particular, the
right-engine fuel/oxygen indicator. After starting, electricity
(AC) is supplied by generators (not shown in Figure 3) powered by
each engine. These generators begin to operate when the engines
reach a set cut-in speed.

Starting the T-382A

With this background, the starting procedure for the T-38A should
be clear. To paraphrase the Flight Manual (pp 2-6),

1. Make sure nothing is in the way of the aircraft.
2. Set the diverter to the right engine.
3. Apply compressed air to rotate the engine.

4. When the engine speed reaches 14% RPM (or at least 12%
RPM!, push the right starter switch.

S. Advance the throttle to idle.
6. Wait for the engine to start.

Igrition should occur before fuel flow reaches 360 lb/hr.
If not, turn the throttle off, maintain air flow for 2
mirutes to evacuate fuel from the engine, and restart.

The EGT (engine thrust) should begin to rise within 12
seconds of start of fuel flow. If it does not, abort the
start.

The generator should cut in before the 30 sec. ignition
circuit times out. If this does not occur check to make
sure that the engine light is Normal. If it is, push the
start button again to provide electrical power for the
start.

68

7. Check the engine instruments, the hydraulic power, and
the caution light panel.

8. Repeat steps 2-7 for the left engine.

9. Disconnect the air supply and, if connected, the external
power.

10. Make sure the battery is on.
Possible Faults

Any of a vast number of faults could cause the T-38A engine
not to start. Our analysis, however is limited to the small
number of faults actually described in the Engine Conditioning
Manual. These faults are listed in Table 1. The reader will
note that in many cases, our identification of a fault is not all
that specific. What constitutes a fault for us is any
determination that terminates the no-start troubleshooting
procedure. By the same token, what appears in the Repair column
of Table 1 is, in some instances a repair, and, in others,
directions for further troubleshooting. The limited time and
information available to us constrained us to work within the
limits of the information provided in the previously identified
manuals.

The Troubleshooting Procedure

A careful reading of the Engine Conditioning Manual reveals a
critical feature of the procedure described therein, namely, its
conformance to a general troubleshooting procedure schema. This
schema depends on a representation of the system under
maintenance as a hierarchical fault tree. Figure 4 shows the
fault tree for the no-start troubleshooting procedure. Althouqgh
Figure 4 is not a perfect match to the description in the Engine
Conditioning Manual, the differences between the two have no
significance for this discussion. Notice that the terminals of
the tree correspond to the faults identified in Table 1. Also
notice that some of the terminals are marked as "Last Resort." In
the troubleshooting procedure, each such faults is assumed as a
last resort when all other faults on its branch have been
eliminated.

The fault tree is nothing more than a description of the
troubleshooting procedure’s structure. Needed to convert that
description into an actual procedure is a fault-tree
interpretation procedure or schema. Table 2 contains a
description of this schema in pseudocode. A more colloquial
description is as follows. To troubleshoot any component, first
check its overall functionality. If the component is
nonfunctional then either repair it, if it is a terminal in the
fault tree, or troubleshoot its subcomponents. However, any

69

Fault

Description

Repair

Ignition Faults

Igniton Circuit Breakers Not
Engaged.

Three circuit breakers are present
in the ignition control circuitry: R
ENGINE START & AB
CONTROL, ENGINE IGNITION
& R AUTOSYN INST, and
IGNITION INVERTER. Any or
all of these could be impropedy

engaged.

Defective Static Inverwer.

The static inverter can fail to
supply AC power to the igniters.

Replace the static inverter.

Defective Electrical System.

The engine’s electrical system can
be faulted in such a way that even
external AC power is not being
delivered 1o the igniters.

Troubleshoot the electrical
system using procedures
defined in the Electrical
Systems Manual.

Defective Igniters.

The igniters themselves may not
fire, even when properly
powered.

Remove the engine.

Fuel System Faults

Defective Aircraft Throtile
Rigging.

The thwottle rigging connects the
throttle to the foel control system.
If defective, fuel flow may not be
adequate for starting.

Fuel System Circuit Breakers Not
Engaged.

The fuel control system will not
if its circuit breakers are
not properly engaged.

Air in System.

Air in the fuel system may retard fuel
flow.

Apply external power and
start engine with boost

Altitade Problem.

Fuel foed may not achicve
required pressure at high altitndes.

Fuel Shutoff Vaive Closed.

A foel shutoff valve must be opea to
permit the flow of fuel.

Excessive Drain from Engine
Components.

Fuel may be draining off throagh

Table 1.

70

Faults Causing No Start Conditions

last-resort fault (that is, one isolated solely by eliminating
other possibilities) should be repaired without further ado.
is mentioned below, these last-resort faults may simply be guards
to prevent the schema from arriving at the impasse of Line
2.3.2.3 in Table 2.

As

| Fault Description Repair |

Intemnal Leakage from Engine Excessive amounts of fuel are drained | Replace the overspeed

Drain Indicator. off through the bypass hose of the govemor.
overspeed govemor

Unknown Fuel System Fault Fuel may not flow for reasons other Remove engine.
than those listed above.

Defective Ignition Time-Delay Relay is not engaged for 30 sec upon
Relay. depressing starter, thus preventing
electrical power from reaching the
L

Defective Divernter Valve. The diverter valve is not positioned
propery.

Blocked Air Duct. The hose from the compressor to the
aircraft, may be blocked or kinked,
thus preventing compressed sir from
reaching the engine.

Defective Engine Starting Air Ducts from the diverter 1o the engines
Inlet Duct and/or Crossover Duct. | may not allow passage of air.

Engine Seized or Binding. The engine may not be rotating freely. | Remove engine and determine
cause of problem.

Operational Problems

Altitade Problem. Engine may not stant st high altitodes.

Table 1. (Concluded)

A critical aspect of this fault-tree approach is the
structure of the tree itself. 1In particular, the structure of
the tree (a) reflects the structure of the equipment itself as a
hierarchy of subsystems and (b) is predicated, by virtue of Line
2.1 on the availability of tests of the functions of all
components except last resorts.

Needed to instantiate the schema for the no-start
troubleshooting procedure are Table 1, Figure 4, and the
observations needed to perform the tests called for in Line 2.1.
These observation procedures, are listed in Table 3.

To summarize, this section describes the no-start

troubleshooting procedure of the T-38A as a fault tree. Needed
to fully specify the procedure are:

71

To troubleshoot a component

1.0 If the component is a Last Resort then
1.1 Repair the component

1.2 Conclude' that the component was faulted
2.0 Else {component is not a last resort}

Note:*"Conclude" statements are equivalent to function
returns in that they terminate the troubleshooting
procedure and return a value describing the fault thus
isolated.

2.3.1.1 Repair the component
2.3.1.2 Conclude that the component was faulted
2.3.2 Else {component has subcomponents}
2.3.2.1 For each subcomponent of the component
2.3.2.1.1 Troubleshoot the subcomponent
2.3.2.1.2 If the subcomponent was faulted then
2.3.2.1.2.1 Conclude component was faulted
2.3.2.1.3 End If
2.3.2.2 End For
2.3.2.3 Conclude fault is unknown
2.3.3 End if
2.4 End if
3.0 End If

2.1 Check the overall functionality of the component
2.2 If the component is OK then

2.2.1 Conclude that the component is not faulted
2.3 Else {component is not OK}

2.3.1 If the component has no subcomponents

Table 2. Fault-Tree Interpretation Schema

the fault tree indicating components and subcomponents
that can be faulted together with their order of testing
(Figure 4),

2. procedures used to test the functionality of each
component in the fault tree (Table 3),

3. repair procedures for each terminal component in the tree
(Table 1), and

4. a procedure for interpreting these data and thereby

executing the troubleshooting procedure (Table 2).

72

Circuit

Breakers,
m & Last Resort
ignition @
AC Systemn @ Last Resort
ottle
Rigging

T-38A No -
Start

Lsst Resort

Stanter

Last Resort

nn

Figure 4. T-38A No-Start Fault Tree.

An engaged reader should, at this point, have several
objections to the entire approach suggested here. For one thing,
examination of the procedure itself, as defined in the Engine
Conditioning Manual is far from optimal. It calls for the
repetition of some observations, for movement from the cockpit to
the tailpipe and back again and for some observations that appear
to yield no information whatsoever.’

’Kieras, Personal Communication, October 1990.

~
W

| Component Test
T-38A No Suan Standard starting procedure
Igniton Observe AB and main plug firing during ignition without external power
Inverter System Check Fuel/Oxy Indicator without exsernal power
Circuit Breakers Check engagement
Static Inverter Last Resont *
AC System Observe AB and main plug with exiemal power
Electrical System | Check voltage s Pin N in engine ignifion and accessories disconnect plugh
Igniters Last Resont
Fuel Check for fuel mist in exhaugt
Throule rigging Advance thronle past idle and check for foel flow or ignition
Fuel lines Anempt repair by running boost pumps to clear air
Circuit breakers Check for engagement
Shutoff Valve Observe status
Engine Drain Line | Check for excessive fuel drainage
Overspeed Check flow rate through bypsss hose
Fuel Symem Laxt Resont
Staner Engine schieves 149% RPM with proper air flow
Holding Relay Check engagement for 30 sec
Diventer valve Inspect position
Air Duct Check for kinks, obstruction
Duct valves Check position
Engine Last resont

Note: “Last-Resont components are always deemed 10 be faulted by a process of elimination.

PNot shown in Figure 1.
Table 3. Functionality Tests for Fault Tree Components

One may also ask why the Air Force, having adopted a
fault-tree approach, chose not to present the procedure in those
terms in the Engine Conditioning Manual. Or, perhaps more
sensibly, one could ask why I chose to present the procedure as a

fault tree.

The answer to all of these gquestions, or at least the first
and the last, is that a fault-tree representation of a
troubleshooting procedure offers cognitive benefits that outweigh
any inefriciency that it may introduce into the troubleshooting
process. Without belaboring the point, a fault tree is a

74

hierarchical structure typical of those found in most highly
developed cognitive skills to simplify overly complex procedures
and thus render them amenable skilled execution (Chase and
Ericsson, 1982). Using more efficient but less structured
approaches would inevitably result in slower learning and in
lower terminal speed and accuracy of performance.

I can only speculate as to why the fault-tree structure is
not explicit in the Engine Conditioning Manual. One possibility
is that the authors assume that this structure will be evident to
technicians using this volume. Another is that the direct
presentation of the procedure is well suited to execution if
learning is not a concern. A third possibility is that the
Engine Conditioning Manual was written by a skilled technician
who had long before automated the procedure to the extent that
the fault-tree no longer played a role in its execution.

Another serious issue is that of the generality of the
approach. The above description is based on the analysis of a
single troubleshooting procedure. I have not investigated any
other documented procedures, even for the same aircraft. Nor
have I verified that the procedure described in the Engine
Conditioning Manual bears any resemblance to actual
troubleshooting. Thus, the conclusions and recommendations based
on this analysis have little in the way of empirical support.

Despite these objections, the instructional design proposed
below is predicated on the assumption that a fault-tree
representation of the no-fault troubleshooting procedure (and
other procedures of the same sort) is the most appropriate
representation for instructional purposes. It therefore forms
the basis for the instructional objectives described below.

Instructional Objective

Since much of this effort relies on the general scheme
described in the previous section, we need to frame the
particular content described above in terms of the general
objectives described in that section. Recall that these
instructional objectives consist of a mental model of the
equipment, the procedures used to maintain the equipment, and the
special skills needed for troubleshooting as problem solving.

Mental Models

Mental models of equipment, as described in the previous
section have three aspects: structure, function, and imagery.

Device Structure

The structure of a device is a formal gqualitative description
of that device, often called a qualitative model. Such a model

75

describes the behavior of individual components, that is, how
they change state in response to changes in input and how their
outputs vary according to state. It also describes the behavior
of the device as a whole, that is, how the outputs of one device
are connected to the inputs of another.

Fault trees of the type described above are closely related
to qualitative models of equipment in that the qualitative model
therefore provides cognitive support for the troubleshooting
procedure. For example, inspection of the right engine
fuel/oxygen indicator for evidence that the static inverter
system is functioning corr.ctly only makes sense within the
context framed by a mental model of the ignition system as shown
in Figure 3.

A qualitative model of the entire starting system could be
(indeed has been)® created from a conception like that shown in
Figure 3 and this figure would make a reasonable basis fcr a
qualitative model if our only concern was the no-start
troubleshooting procedure. However, any realistic maintenance
course must also address many other malfunctions and
troubleshooting procedures. The model shown in Figure 3 is not
really a system but rather the components of several systems
that, taken together, are responsible for starting the aircraft
or failing to start it. A different function (e.g., establishing
radio communications) or even a different malfunction of the same
system (e.g., failure to start in flight) would involve different
components of the same or different systems. If troubleshooting
training were to be based on models like that of Figure 3, a
different model would »e needed for each malfunction in the
curriculum. The proliferation of such models would easily defeat
any advantage of model-based training.

Needed, therefore, is one or a small number of models that
can support troubleshooting training for all malfunctions of
interest. Function or malfunction-specific models like that of
Figure 3 may still have a place in training and may even take a
measure of cognitive reality. However, a more general scheme is
needed to define the mental models that constitute instructional
objectives in this context. The design of such a scheme for the
T-38A is beyond the scope of this section. Nonetheless, we can
describe a strategy for constructing a mental model of the
aircraft. This strategy has a bottom-up and a top-down
component. The bottom-up component calls for a fault-tree
analysis of each malfunction covered in the Engine Conditioning
Manual, the Electrical Systems Manual, and other such documents.
One result of this analysis will be a collection of tables like
Table 1 and Table 3, specifying components and elementary
procedures for repair and observation. This information can be

“Towne, personal communication. October 1990.

76

used (along with other technical documentation) to construct
component models that reflect normal and faulted behavior and
that can be appropriately manipulated during troubleshooting.

The top-down component of the strategy calls for analysis of
the aircraft’s systems using the scheme laid out in Section I of
the Flight Manual. As illustrated in Figure 5, this scheme
describes the major systems of the aircraft: fuel, fuel control,
electrical, etc., together with their subsystems.

Combining the uottom-up and top-down analyses is a matter of
merging the primarily component-wise information in the former
with the topological and structural information in the latter.

Device Function

For purposes of troubleshooting, device function is best
thought of in terms of operating functions and malfunctions.
Section VI of the Engine Conditioning Manual is an excellent
starting point for such an analysis. Identified in that section
(entitled "Troubleshooting Engine and Related Problems") are a
number of operating modes of the aircraft. For each operating
mode is a list of malfunctions. For each malfunction, a
troubleshooting procedure (theoretically, based on a fault tree)
is provided which identifies particular components and
subcomponents. Thus, it is possible to construct a functional
hierarchy based on operations, potential malfunctions, and the
normal or faulted operation of individual components. This
hierarchy for T-38A engire functions is shown in Figure 6.

This functional hierarchy is not the same as the structural
breakdown by system shown in Figure 5, particularly since several
systems are usually involved in each operation. Starting
Operation, for exar>’ involves the starter system, the fuel
system, the fuel coni.rol system, the ignition system, the
electrical power system, and the engine. The functional
hierarchy of Figure 6 is organized around the T-38s functions or
missions, and it comprises a distinct, important aspect of the
instructional objectives. Below, in the following subsection
entitled "System Function", we will discuss the part that it
plays in curriculum design.

Imagery

Imagery, as conceived of in the previous section, is the
perceptual face of a technician’s conception of the equipment.
As such, it covers the appearance (in sight, sound, and other
senses) of the equipment, the physical actions that implement
observations and repairs, and knowledge of the physical location
of components and subsystems.

77

T-38A

Engine

Oil System

[Start and

Fuel Control Ignition
ystem

Main Fuel
Control Aﬁgﬁ:ﬁ“’
System
Main Fuel
Pump Control
Figure 5. Structural Breakdown of the T-38A

Direct formal representation of the imaginal aspects of a
mental model are well beyond current methods of knowledge
representation. What can be constructed, however, is a system of
tokens that stand for different perceptual chunks. These tokens
would include, in the case at hand,

1. the perceptual aspects of all observations, such as the
sound of the main igniter sparking and the appearance of
the fuel-flow indicator;

78

System
Group

Operation

Malfunction

System

Component

Figure 6.

Engine

Related
Systems

Functional Breakdown of T-38A Engine~Related
Components

2. the actions needed to effect operations and repairs, such
as shorting out the afterburner igniter and engaging a
circuit breaker; and

3. transitional items needed to refocus attention from one
component or operation to another, for example, locating
the ignition-system circuit breakers or moving from the
cockpit to the rear of the aircraft.

79

The Troubleshooting Procedure

The second type of instructional objective proposed in the
previous section is that of procedural knowledge. Some aspects
of procedural knowledge representation are discussed in that
section, but a more informed description can be found in Section
II. To a large extent, both of these general discussions are
superseded by the specific description of troubleshooting in the
previous subsection entitled "Starting the
T-38A."

This subsection suggests that three distinct items of
procedural knowledge are involved in mastering the no-start
troubleshooting procedure:

1. the general troubleshooting schema of Table 2,

2. the testing and repair procedures listed in Table 1 and
Table 3, and

3. the structural information in the fault tree itself
(Figure 4).

These items constitute three, almost independent, procedural
objectives for instruction in the no-fault troubleshooting
procedure. By “almost independent” I mean first that the
fault-tree interpretation schema can be learned in such a way
that it will apply to any fault tree, not just the one presented
in Figure 4. Also, the testing and repair procedures can be
mastered outside of no-fault troubleshooting procedure and most
will probably be useful in other maintenance tasks. Mastery of
the fault tree (Figure 4) does, however, depend on mastery of the
fault-tree interpretation schema.

Representation mechanisms for the types of procedural
knowledge of concern here are well discussed in Section II.
Recommended there is the use of Card, Moran, and Newell’s (1983)
GOMS scheme for representing procedural knowledge.
Representational schemes such as GOMS constitute important but
not complete tools for expressing fault-tree based
troubleshooting procedures.

Representing the Fault-Tree Interpretation Schema

The fault-tree interpretation schema of Table 2 is basically
a control structure wrapped around retrieval operations that
fetch the appropriate elementary repair and operation procedures.
The control structure in this schema can be translated in a
straightforward manner directly into GOMS. Not specified in
Table 2, however, are the operations needed to retrieve
irnformation that instantiates the schema. For example, Line 2.1
requires retrieval of a procedure of the sort listed in Table 1.

80

Line 2.3.1 requires the retrieval of structural information of
the type specified in Figure 4. These retrieval operations will
vary according to situation and skill level of the technician.
Novices will use technical documentation, instructors and other
external sources. Intermediate technicians will retrieve this
information from long-term memory. In highly-skilled
technicians, the schema and its instantiating data will be
compiled into a single procedure that resembles the description
in the Engine Conditioning Manual. A GOMS representation of the
schema in Table 2 must therefore provide different strategies for
retrieval operations to reflect the circumstances and skill
levels of the technician.

Representing Elementary Procedures

The elementary procedures listed in Table 1 and Table 3 are
eminently suited for representation as GOMS structures. Indeed,
a preliminary GOMS analysis of the entire no-start
troubleshooting procedure is available and is provided here in
Appendix A. Much of the material in this appendix are analyses
of the operations in Table 1 and Table 3.

It is worth noting in passing that Appendix A offers a
reasonable representation of the procedure used by a highly
skilled technician. Control knowledge and operational knowledge
are compiled into one procedure and the fault tree is given no
explicit representation at all. Most of the literature on skill
development indicates that this composition or compilation is a
characteristic of highly automated skills.

Representing the Fault Tree

Fault trees such as that shown in Figure 4 are, on the face
of it, declarative knowledge, and, in students, they may begin
life in declarative form. To be of use, however, their
fundamental representation must be procedural. The procedural
requirements of the interpretation schema (Table 2) are the
following functions.

1. Retrieve the procedure for checking the functionality of
a component (Table 2, Line 2.1).

2. Retrieve the procedure for repairing a terminal component
(Table 2, Lines 1.1 and 2.3.1.1).

3. Decide whether or not a component is terminal (Table 2,
Line 2.3.1).

4. Retrieve successive subcomponents of a non-terminal
component (Table 2, Line 2.3.2.1).

81

A minimal representation of a fault tree must therefore
implement these four functions. For instructional purposes a
declarative representation will also be needed together with
procedures (perhaps GOMS procedures) for implementing these
functions by interpreting the declarative representation.

Troubleshooting as_Problem Solving

The last category of instructional objective mentioned in
Section IV is that of troubleshooting. My concern in including
that category was for troubleshooting as a problem-solving
activity in which the technicians need to discover the
appropriate fault isolation strategy. In particular, my reading
of the literature in this area suggested a problem solving
procedure with three main components:

1. context free rules for isolating faults based on
topological patterns,

2. device-specific rules for troubleshooting based on known
symptom~-fault associations, and

3. procedures for choosing the most information-laden
actions at particular choice points.

This problem-solving approach to troubleshooting relies only
on connectivity information in the mental model and a set of
device-specific observation-action associations.

By contrast, the focus of this section is on troubleshooting
procedures, in which the isolation strategy is provided through
documentation and instruction and need only be implemented by the
technician.

Troubleshooting as problem solving is an important aspect of
skilled troubleshooting and therefore of maintenance training,
even when a large body of troubleshooting procedures is
available. 1In a system of any complexity, no troubleshooting
guide offers complete coverage of the possible faults, and seldom
will a guide offer procedures for dealing with complex situations
such as test-equipment unreliability, multiple interdependent
faults, and intermittent faults.

Schemes are available for representing troubleshooting as
problem solving (Hunt and Rouse, 1984; Towne, Johnson, and
Corwin, 1983), and instructional systems are available for
implementing these schemes. Although these representation
schemes could be improved (see Section IV) this section is not
the place to focus on the issue.

Of central concern, however, is the relationship between the
procedural approach to troubleshooting presented in the previous

82

subsection entitled "The Troubleshooting Procedure" and
problem-solving approaches such as those of Hunt and Rouse (1984)
and Towne, Johnson, and Corwin (1983). The fault-tree approach,
by sacrificing generality, provides the structure needed to
render the troubleshooting process manageable with limited time
and cognitive resources. Methods for troubleshooting as problem
solving have greater generality but are expensive in terms of
both time and resources. A combination could use the fault-tree
procedure in the initial stages and invoke a problem solving
process to deal with cases not covered in the fault tree.

Earlier we mentioned that the last-resort faults in Figure 4
seemed to be guards against the impasse that might occur if a
component malfunctions but each of the tested subcomponents
functions properly (see Line 2.3.2.3 of Table 2). 1In addition to
guarding the procedure against impasses, these last-resort faults
may also play the role of place holders that mark occasions for
troubleshooting as problem solving. If so, then the fault tree
could be redesigned to eliminate the last-resort faults, and an
impasse itself (i.e., Line 2.3.2.3) could signal the occasion for
invoking a problem solving process.

The implications of this suggestion for curriculum design are
clear. That 1is, troubleshooting as problem solving should be
taught after, and in conjunction with procedures based on fault
trees, and students should be explicitly taught when to enter a
problem-solving mode of troubleshooting. These points of
transition are the Last Resort items in Figure 4 or,
alternatively the impasses marked by Line 2.3.2.3 of Table 2.

Summary

The suggestions made above regarding instructional objectives
for the no-start troubleshooting procedure parallel the general
suggestions in Section IV.

A mental model should be developed that covers the
structural, functional, and imaginal aspects of the T-38A. The
structural aspects can be represented using any of a number of
schemes for qualitative modeling. The model thus derived should
cover all components germane to documented T-38A troubleshooting
procedures and should reflect the overall structure of the
aircraft as described in Section I of the Flight Manual. A
functional breakdown, based on operations, function, and
malfunctions (see Figure 6) should describe the function of each
component and provide a method for discriminating between normal
and malfunctioning operation. The imaginal aspects of the mental
model are best implemented as tokens or placeholders that refer
to perceptions, actions, and transitions in attention.

The no-start troubleshooting procedure, and others of its
ilk, should be represented using a fault-tree scheme. This

83

scheme is based on a general fault-tree interpretation procedure
described in Table 2 and cast so that it accommodates the
different information-retrieval methods appropriate for different
situations and skill levels. Also part of the scheme is the set
of elementary procedures for observation (Table 3) and repair
(Table 1). A third aspect of the fault-tree approach is a
representation of the fault tree itself in procedural and
declarative terms. Its procedural representation should include
the functions needed for retrieval of structural information in
the interpretation schema of Table 2.

We also made brief mention of problem-solving approaches to
troubleshooting that select local troubleshooting moves or
actions based on device topology, known observation-action
associations, and the information value of potential actions. We
suggested that students need to be taught these problem-solving
techniques and should be trained to invoke them when the
fault-tree approach arrives at an impasse.

Instructional Material and Methods

Section 1V proposes certain methods for using computers in
maintenance training. The discussion in that section, and in
this one as well, is organized around three aspects of a
computer-based instructional system.

Infrastructure

An instructional infrastructure for computer-based
maintenance training consists of computational representations of
the instructional objectives. 1In particular, it contains
mechanisms that can simulate and describe the equipment under
maintenance in both qualitative and physical terms. It also
contains mechanisms that can interpret and describe procedures to
be learned. 1In addition, an expert troubleshooting system should
be available for teaching troubleshooting as problem solving.

Qualitative and Physical Simulation

Recall that the mental model consists of a qualitative model
of device behavior, a description of device function, and a
collection of tokens that stand for imaginal (perceptual) aspects
of the device. The qualitative model can be implemented in a
computer using available gualitative simulation systems such as
that described in Towne, Munro, Pizzini, Surmon, Coller, and
Wogulis (1990). These systems have the following basic
capabilities.

1. They can instantiate any qualitative model of the sort
described in Section IV.

84

2. They can carry out gqualitative reasoning on the model and
thereby determine the states and outputs of specified
components based on information regarding states and
state-changes in the rest of the device.

3. They present to the student a graphical depiction of the
system being simulated. This depiction does not
generally resemble the physical appearance of the system.
Rather, it represents components as icons that can be
manipulated by the student and whose appearance reflects |
the states of the corresponding components. A display
from such a system might, for example, bear a passing ‘
resemblance to Figure 3.

4. They provide different views of the system. Presented to
the student not just as one view of all components, but
rather a collection of views, each showing only the
components selected for that view. Some of these views
might show the behavior of major subsystems, and thus
conform to the breakdown illustrated in Figure 5.

Others, might conform to the functional breakdown
illustrated in Figure 6 in that, like Figure 3, they show
all of the components involved in a particular function.

Constructing a qualitative model of the T-38A, then is a
matter of entering the qualitative model of the aircraft into a
qualitative simulation system, designing the graphical
representation of the model, and constructing the views needed
for instruction. For troubleshooting training, three types of
views are needed.

1. Global subsystem views are needed that present each major
subsystem as an independent unit.

2. Views like that in Figure 3 should be constructed to show
all of the components involved in the functions and
malfunctions selected for troubleshooting.

3. A third type of view conjoins the first two and thereby
depicts only the components involved in particular lower
level nodes of the fault tree. Figure 7, for example,
provides a view of the Fuel Sysiem branch of the fault
tree in Figure 4.

Needed to support the imaginal aspects of the model is a
physical (as opposed to qualitative) simulation of the aircraft.
This physical simulation presents to the student, through
appropriate media, the sights, sounds, and manipulanda associated
with each of the tokens in the imaginal model (see previous
subsection entitled "Imagery"). These requirements include:

85

Figure 7.

1.

-

Boost Pump o

Fuel Shutotf Valve

e O R R

Overspeed Govemnor

&
%
72}
=
o
Q
<

Pressurizing and Drain Valve

I 24 V DC BUS

Left
Engine

Components Involved in the Fuel Flow Branch of the

No-Start Fault Tree (Figure 4)

86

a simulation of all observations that might be made in
the course of troubleshooting, including indicators such
as the Right Fuel/Oxygen Indicator and other sorts of
observations such as the appearance of fuel mist in the

exhaust;

a simulation of all actions that might be undertaken in
the course of troubleshooting, including controls such as
the throttle and other actions such as that of shorting
out the AB ignition plug; and

3. a simulation of transitions that refocus attention from
one component of the aircraft to another, including views
of panels such as the instrument panels and gross changes
of view such as descending from the cockpit and moving to
the rear of the aircraft.

As a development strategy, the team developing instruction
should walk through every branch of every troubleshooting
procedure, noting the views and manipulations needed to support
the procedure. These notes can then form the basis for
production of the physical simulation in appropriate media.

Naturally, the physical and qualitative simulations should be
linked in their implementation so that manipulations of the
physical simulation are manifest as state changes in the
qualitative simulation, and manipulations in the qualitative
simulation are manifest in displays of the physical simulation.
For example, if the student, in the gualitative model closes the
fuel shutoff valve, then a view of the exhaust in the physical
simulation (with the throttle on) should reveal no fuel mist.
Conversely, if the student, in the physical simulation, applies
external power to the aircraft, then the Ignition Power Transfer
Relay’ should be shown to energize in the qualitative
simulation.

Procedure Interpretation

A second component of the instructional infrastructure is a
computational implementation of the procedures needed for, in our
case, troubleshooting. Recall that the formalism used for
representing these procedures is the fault tree descriked in the
previous subsections entitled "The Troubleshooting Procedure."
The components of this formalism are

1. a fault-tree interpretation schema, represented in GOMS
or some similar formalism,

2. the fault-tree itself, represented in both procedural and
declarative forms, and

3. the observation and repair procedures attached to nodes
in the fault tree, also represented in GOMS or some other
appropriate formalism.

Needed to computerize these formal models are an interpreter
that can execute the troubleshooting procedure, appropriate links

"This relay, shown but not labeled in Figure 3, is energized
by the AC bus. When engaged, it directs power from the AC bus to
the ignition circuit and disconnects the AC output of the static
inverter from this circuit.

87

to the simulation models discussed above, and a means of
presenting the structure of the procedures themselves to the
student. The first two items pose no particular challenges since
interpreters are available for this purpose and since the
simulations themselves possess the mechanisms needed to link them
to a procedure interpreter.

The third item, the means of presenting the procedure itself
to the student, is a critical aspect of the instructional design
proposed here. Mechanisms are needed for explicit presentation
of each of the three parts of the fault-tree approach.

Presenting the Fzult-Tree Interpretation Schema. Support
for navigating the fault-tree interpretation schema of Table 2

should be provided by a display that either indicates the major
milestones in the schema or allows the student to indicate these
milestones. These milestones include:

1. checking the functionality of the component under
consideration (Table 2, Line 2.1),

2. 1isolation and repair of a component (Table 2, Line
2.3.1),

3. troubleshooting the subcomponents of a component (Table
2, Line 2.3.2.1), and

4. dealing with unsolved cases (Table 2, Line 2.3.2.3).%

We can distinguish several ways of presenting milestone
transitions to students, depending on the level of guidance
required.

1. 1In heavily guided practice, the computer should be
capable of dictating the next milestone to be reached in
the procedure. For example, "We have just determined
that no fuel is flowing. We will examine each of the
potential causes of this problem in turn."

2. In more relaxed guidance, the student should be required
to indicate the next milestone. For example, "We have
just determined that no fuel is flowing. What do we do
next in the fault tree?"

3. Under even more relaxed guidance, the computer might
simply note milestones as they occur and check to ensure
that the student’s actions are consistent with the

!For basic instructional purposes, students should be protected
from these impasses. However, impasses can be used to give
problem-solving practice to more advanced students.

88

schema. For example: "We have just determined that no
fuel is flowing. You are checking the Starter Air Inlet
Duct. Re-examine the fault tree to make sure that this
is the next step."

Presenting the Structure of the Fault Tree. As with the
interpretation schema, both a declarative and procedural
interpretation of the tree itself is needed. The declarative
presentation is perhaps best done graphically, using a display
lik:2 that of Figure 4. As the procedure traverses the tree, the
active elements can be highlighted in some way and/or subtrees
can be displayed as a means of focusing attention (see Figure 8
for examples).

Figure 8. Use of Subtree and Highlighting to Focus Attention

The procedural aspects of fault tree structure are defined as
a list of functions in the previous section entitled
"Representing the Fault Tree." A computer implementation of
these functions should make their results available to students
and should be able to query students about the structure of the
tree. 1In particular, the computer should have the means to

1. inform the student of the procedure needed to check the
functionality of any component—for example, "To check for
low fuel flow, use the procedure that checks fuel mist in

the exhaust."

2. ask the student to designate or execute the procedure
needed to check the functionality of a component—for

89

example "Select the procedure for checking the overspeed
generator,"

3. inform the student of the procedure for repairing any
faulted component—for example, "To repair the static
inverter, use the procedure for replacing the static
inverter,"

4. ask the student to designate the procedure for repairing
a faulted component—for example, "Select the procedure
used to repair the disengaged IGNITION INVERTER circuit
breaker,"

5. etc.

These functions, can, like those listed in the previous part,
be used in guided practice to ensure that the student learns how
to properly manipulate the fault tree.

Presenting Procedures for Observation and Repair.

Procedures for repair of faulted starting system components are
presented in Table 1. Procedures for checking the functionality
of components are listed in Table 3. As instructional
objectives, both types of procedures are represented in some
formalism such as GOMS (see previous subsection entitled
“Representing Elementary Procedures").

In a computer-based instructional system, these procedures
need to be given a declarative, verbal description, such a
plain-English paraphrase of the GOMS representation, and a
procedural implementation in the qualitative and physical
simulations. 1In this way students can be shown or asked how the
procedure unfolds through interactions conducted in verbal terms,
in terms of physical actions and observations, or in qualitative,
conceptual terms.

The power of these separate presentation schemes is
multiplied by joining them together in complete or partial
presentations of the entire troubleshooting procedure. As the
procedure is presented and practiced, the system or the student
can focus on any of five critical aspects of the procedure:

1. strategy—the status of the procedure with respect to the
fault-tree interpretation schema,

2. tactics—the status of the procedure with respect to the
fault tree itself,

3. stepwise descriptions—the elementary observation and
repair procedures,

20

4. implementation—the physical actions and observations (in
the physical simulation) that implement the procedure,
and

5. conceptual aspects—the theoretical description (in the
qualitative model) of the procedure.

With the computer implementation suggested above, we view
each of these aspects as being potentially available for
presentation or practice at any point in the procedure.

Problem Solving and Troubleshooting

Above, in the previous subsection entitled "Troubleshooting
as Problem Solving," we discussed troubleshooting as a problem
solving activity as opposed to the fault-tree procedural approach
described in the previous section entitled "The Troubleshooting
Procedure." In Section IV, I suggest that the computational
support needed for effective training of these problem-solving
skills is a troubleshooting expert based on the problem-solving
methods that students should master to solve particular problems.

To my knowledge, two such experts are available, namely,
PROFILE (Towne, Johnson, and Corwin, 1983) and the Fuzzy
Rule-Based Model of Hunt and Rouse (1984). The former is an
almost pure information-theoretic approach that achieves not only
efficient troubleshooting but also an impressive match to human
troubleshooters. The latter, however, offers more face validity
in that it incorporates some of the heuristics known to be used
by human troubleshooters.

I will not speculate on which of these models is more
appropriate for training in this situation. I will mention,
however, that whatever model is used, that model should operate
within the context of the qualitative simulation described above.
It should also be able to start in mid problem, and in
particular, when the fault-tree procedure reaches an impasse. It
should also be able to present or explain its choice of each
troubleshooting action as problem-solving proceeds.

Instructional Methods

Instructional methods constitute the procedures for engaging
the student in instructional interactions. Consistent with the
view of instructional objectives described above, Section IV
proposes that some of these procedures address the acquisition of
a mental model of the equipment. Some should address acquisition
of procedures. Some should address the problem-solving skills
needed for effective troubleshooting.

The foregoing part has provided us with a powerful set of
tools for addressing these goals. To specify the instructional

91

methods completely, we need to configure these tools and assemble
them into a curriculum. The discussion above suggests that the
curr iculum for troubleshooting training should be organized
around a few major types of activities that reflect advancing
levels of knowledge and skill.

System Behavior and Structure

The first level of understanding to be attained by students
is that of a mental model of the device. Activities promoting
such attainment include exercises with both the qualitative and
physical simulations within a framework of the structural
breakdown of the aircraft (Figure 5). Students at this stage
will master fundamental qualitative reasoning tasks such as
predicting the behavior of individual components and determining
the implications certain states of the equipment. Exercises to
be used in this phase of the curriculum are listed in Section IV
(subsection entitled "Instructional Methods"). To quote from
that section,

1. Physical and Conceptual Structure. Students are shown images of the physical equipment and
asked to identify individual components, their function, and their immediate connections.

2. Causal Reasoning. Students are given information sbout all inputs to a component or subsystem
and required to predict the state of the component or subsystem, its outputs under normal
operating conditions, and its outputs in each possible fault mode.

3. Functional Reasoning (a). Students are shown some of the inputs to an element of the device
and asked how its other inputs must be set in order to achieve a desired function or state.

4. Functional Reasoning (b). Students are shown the actual outputs and inputs to an element and
asked to determine whether or not the ='ement is faulted.

5. Physical and Conceptual Appearance. Students are asked to discriminate among component states
on the basis of some physical depiction of those states.

The exact sequence of these exercises should be designed to reflect and convey the overall structure
of the equipment. In the typical case, where the equipment can be hierarchically decomposed, the
exercises can traverse this decomposition in a depth-first fashion so that students learn to reason
about a subsystem immediately after learning to reason about each of its components.

These exercises should also be implemented with a view to whole-task training. Many if not all of

them could be embedded in mini-troubleshooting problems in order to illustrate the application of
qualitative reasoning to troubleshooting.

System Function

A second phase of the curriculum should give students an
understanding of how components function, or fail to function,
together to meet the operational purposes of the aircraft. Put
differently, students in this phase should learn

1. what the system and its components are supposed to do,

2. how to make the system fulfill those functions, and

3. how to determine when the system is not meeting its
functions.

92

Activities at this level are organized around the functional
breakdown of the aircraft, illustrated schematically in Figure 6.
By making this structure evident in instruction, students should
be able to induce the basic operations of the system and how its
components are involved in those operations.

Activities addressing system function are operational in
nature. Some exercises provide guided practice procedures such
as starting the engines and in elementary repair and observations
of the type listed in Table 1 and Table 3. Practice should begin
with the gqualitative simulation alone, pass to a stage with joint
gualitative and physical simulations, and end with the physical
simulation alone. Each subphase should begin with demonstration
of the procedure followed by practice.

The order of presentation of different procedures in this
phase should conform to a depth-first traversal of the functional
breakdown, and, more importantly to the subgoal structure of the
procedures themselves. Specifically, the GOMS representation of
each procedure breaks the procedure into small manageable
subgoals that can be mastered individually. The curriculum
should obviously take advantage of this feature of the
representation.

A second type of activity in this phase should teach the
students the tests or observations needed to check the
functionality of each component of the aircraft. Several types
of exercises can be used to effect such teaching.

1. Students can participate in qualitative reasoning
exercises that address the test procedures. For example,
they might be asked to predict the behavior of the Right
Fuel/Oxygen Indicator in aircraft that have normal or
faulted static inverters.

2. Students can practice observational procedures, such as
checking fuel flow in the overspeed governor, in the
context of testing the system’s functionality. Exercises
that place the student in an apprenticeship role can be
used to implement this strategy.

3. Students can be asked to both select and execute test or
observational procedures. For example, where a beginning
student would practice testing the AC bus by being
informed that the test involved checking Pin N in the
engine ignition and accessories disconnect plug, more
advanced students would practice the same operation by
simply being instructed to test the AC bus.

By the end of the second phase of training, students should
have many of the component skills of fault-tree based
troubleshooting procedures. In particular, they should know how

93

to test any of the aircraft’'s components and subsystems for
normal functioning, and they should have a good idea, from
exposure to structures like that of Figure 6, of the structure of
the fault trees to be used in troubleshooting.

Troubleshooting Procedures

In the third phase, students should be introduced to
fault-tree interpretation and to the fault trees that define the
set of troubleshooting procedures to be learned. The activities
that address these topics are described in some detail above in
the subsection entitled "Procedure Interpretation." Arranging
these exercises into a curriculum is not a difficult task. The
following guidelines seem reasonable in this respect.

1. Every malfunction’s fault tree should be covered first in
a depth-first traversal of the tree and then in a random
order.

2. 1Initial exercises should provide explicit support for use
of the fault-tree interpretation schema (see previous
subsection entitled "Procedure Interpretation)." This
support can be withdrawn after practice with a few
malfunctions.

3. The first exercises with each malfunction should rely
heavily on an explicit representation of the fault tree
for the malfunction. This support should be faded with
advanced practice.

4. Exercises should begin first in the qualitative
simulation. As students master the structure of the
fault tree, use of the physical simulation can be phased
in and support from the qualitative simulation can be
faded.

5. Documentation that is normally available in the field
should be available on-line.

Problem Solving

We have noted above the importance of teaching
troubleshooting as a problem-solving activity. In the previous
subsection entitled "Problem Solving and Troubleshooting,” I
suggested that problem-solving activities have a particular place
whenever fault-tree methods arrive at an impasse (Line 2.3.2.3 of
Table 2). Although students in the trouble-shocting procedure
phase (previous subsection entitled "Troubleshooting Procedures")
of the curriculum should be protected from such impasses,
students ready for this problem-solving level should be presented
with impasses as opportunities to practice problem solving.

94

Section IV contains proposals for instruction in
troubleshooting as problem solving. The following is a list of
suggested exercises taken from that section.

1.

Troubleshooting. Students are provided with a conceptual simulation containing a single
faulted component. At each point in the troubleshooting exercise, students would choose an
action and exhibit the consequences of the actiun. The exercise could take many forms. For
example, students might be prompted to select actions diagnostic of a particular faults or sets
of faults. Other forms of troubleshooting practice can be found in Brown, Burton, and de Kleer
(1982).

Reverse Troubleshooting. Students are told that a particular component is faulted. They are
required to predict the results of certain observations based on this information. Causal
reasoning patterns can be elicited or exhibited during the course of these exercises.

Case Studies. Students could be given real case studies of intractable troubleshooting
problems. Computer support could be provided for collaborative problem solving and for peer
and expert critiques of proposed solutions.

A typical troubleshooting curriculum might have the following lessons.

1.

A set of reverse troubleshooting and troubleshooting problems that cover the major topological
patterns found in the device. Each pattern would be addressed first by reverse troubleshooting
exercises and then by troubleshooting exercises.

A set of reverse troubleshooting and troubleshooting problems that cover the equipment’s
mission-critical faults and their nearest neighbor. Students would first reverse troubleshoot
each major fault and its neighbor and then troubleshoot the pair.

A repetition of Lesson 1 without reverse troubleshooting.

A repetition of Lesson 2 without reverse troubleshooting.

A mixture of Lessons 3 and 4.

Reverse troubleshooting in this curriculum plays the role of
a cognitive support which is gradually faded from the curriculum.
Other cognitive supports (e.g. external hypothesis lists) should
also be withdrawn in the last lesson.

What needs to be added to this description is

1.

that these exercises should only be introduced in the
context of an impasse in the fault-tree procedure, when,
for example, all components under "Fuel" in Figure 4
function properly but fuel is still not evident in the
exhaust;

that the exercises should only be introduced when the
student has mastered the fault tree for the malfunction,
and

that the exercises should be conducted in the presence of

a tutor working the problem under the same set of initial
conditions as is the student.

Summary

The central contribution of this section is the instructional
analysis of troubleshooting procedures based on fault trees. The

95

general approach suggested here to the teaching of fault-tree
based troubleshooting can be summarized with the following
points.

A fault-tree based troubleshooting procedure consists of a
hierarchical fault tree, a general schema for interpreting the
tree, and the elementary observation and repair procedures needed
to implement the procedure. 2All three aspects of the procedure
need to be mastered by students.

Training should begin, not with the procedure itself, but
rather with instruction oriented to the structure and behavior of
the equipment and its components. This initial instruction
establishes the student’s mental model and can be implemented
using qualitative and physical simulations of the equipment.

Training on elementary observation and repair procedures
should be introduced in conjunction with instruction on device
functionality. This instruction should teach students how the
equipment is used, how compconents operate together to achieve the
functions of the equipment, and how to determine when the device
or any of its components is not functioning properly.

Training on the use of fault trees should be based on guided
practice. 1Initially the interpretation schema and the trees
should be made explicit in the instruction. As students advance
this explicit support can be withdrawn.

When students are ready to master troubleshooting as problem
solving, practice opportunities should be provided within the
context of fault-tree procedures. In particular each problem
solving exercise should begin by driving the fault tree procedure
to an impasse in which a component malfunction cannot be traced
to a malfunction in any of its subcomponents.

96

VI. CONCLUSIONS (Hioki)

Polson & Polson, Polson & Kieras and Halff present
interesting discussions on critical components needed to enable
automated and intelligent assistance to the novice in the design
and development of effective CBI. The specific areas of concern
here include automating the cognitive task analysis process and
design and delivery of maintenance procedures.

Polson & Polson and Polson & Kieras emphasize the importance
of integrating a task analysis function that is "meaningful and
correct" to support the subsequent instructional design,
development and delivery phases. If possible, this function
should be automated to the extent possible and include the
capabilities to capture subject matter explanation, breadth of
component representation and explicit procedures. These
capabilities are critical to successful instruction.

Halff continues the discussion by outlining the need for
automating critical instructional design elements. He
specifically addresses the requirements for representing
appropriate mental models, procedures and trouble shooting
skills, and their roles as prerequisites in accomplishing
maintenance tasks. Following this theoretical discussion, Halff
provides an instantiation of this approach with content from an
operational aircraft maintenance procedure.

By integrating current advances in the related areas of
computer hardware and software technologies, cognitive science
and instructional design with the ideas and recommendations of
this paper, the outcome could contribute significantly to the
initial framework of an AIDA system. Taken together with other
theoretical discussions documented in Volumes 1 and 3 of this
series may ultimately determine the level of instructional
success awaiting future recipients of CBI.

97

REFERENCES

Anderson, J. R. (1982). Acquisition of cognitive skill.
Psychological Review, 89, 369-406.

Anderson, J. R. (1983). The architecture of cognition. Cambridge,
MA: Harvard University Press.

Anderson, J. R. (1987). Skill acquisition: Compilation of
weak-method problem solutions. Psychological Review,
94(2), 192-210.

Anderson, J. R. (1990). Analysis of student performance with the
LISP tutor. In N. Frederiksen, R. Glaser, A. Lesgold, & M.

Shafto (Eds.), Diagnostic monitoring of skill knowledge
acquisition (pp. 27-50). Hillsdale, NJ: Erlbaum.

Anderson, J. R., Boyle, C. F., Corbett, A. T., & Lewis, M. W.
(1990) . Cognitive modeling and intelligent tutoring.

Artificial Intelligence, 42, 7-49.

Anderson, J. R., Boyle, C. F., Farrell, R., & Reiser, B. J.
(1984). Cognitive principles in the design of computer
tutors. In Sixth Annual Conference of the Cognitive
Science Society Program (pp. 2-16).

Anderson, J. R., Boyle, C. F., & Reiser, B. J. (1985).
Intelligent tutoring systems. Science, 228, 456-462.

Bovair, S., Kieras, D. E., & Polson, P. G. (1990). The
acquisition and performance of text-editing skill: A

cognitive complexity analysis. Human Computer Interaction,
5, 1-48.

Brown, J. S., Burton, R. R., & de Kleer, J. (1982). Pedagogical,
natural language and knowledge engineering techniques in
SOPHIE I, II and III. In D. Sleeman & J. S. Brown (Eds.),

Intelligent tutoring systems (pp. 227-282). London:
Academic Press.

Burton, R. R. & Brown, J. S. (1982). An investigation of computer
coaching for informal learning activities. In D. Sleeman &

J. S. Brown (Eds.), Intelligent tutoring systems
(pp. 79-98). London: Academic Press.

Campione, J. C., & Brown, A. L. (1990). Guided learning and
transfer: Implications for approaches to assessment. In N.
Frederiksen, R. Glaser, A. Lesgold, & M. Shafto (Eds.),

Diagnostic monitoring of skill knowledge acquisjtion
(pp. 141-172). Hillsdale, NJ: Erlbaum.

98

Card, S. K., Moran, T., & Newell, A. (1983). The psychology of
human computer interaction. Hillsdale, NJ: Erlbaum.

Chase, W. G., & Ericsson, K. A. (1982). Skill and working memory.

In G. H. Bower (Ed.), The psychology of learning and
motivation (Vol. 16, pp. 1-58). New York: Academic Press.

de Kleer, J., & Brown, J. S. (1983). Assumptions and ambiguities
in mechanistic mental models. In D. Gentner & A. L.
Stevens (Eds.), Mental models (pp. 155-190). Hillsdale,
NJ: Erlbaun.

de Kleer, J., & Brown, J. S. (1985). A gualitative physics based
on confluences. In D. G. Bobrow (Ed.), Qualitative

reasoning about physical systems (pp. 7-83). Cambridge,
MA: Bradford.

Frederiksen, J. R., & White, B. (1990). Intelligent tutors as
intelligent testers. In N. Frederiksen, R. Glaser, A.
Lesgold, & M. Shafto (Eds.), Diagnostic monitoring of

skill knowledge acquisition (pp. 1-26). Hillsdale, NJ:
Erlbaunm.

Frederiksen, N. (1990). Introduction. In N. Frederiksen, R.
Glaser, A. Lesgold, & M. Shafto (Eds.), Diagnostic
monitoring of skill knowledge acquisition (pp. ix).
Hillsdale, NJ: Erlbaum.

Gagné, R. M. (1968). Learning hierarchies. Educational
Psychologist, 6, 1-9.

Gagné, R. M. (1985). The conditions of learning and theory of

instruction. New York: Holt, Rinehart and Winston.

Gagné, R. M., & Merrill, M. D. (1990). Integrative goals for

instructional design. Educational Technology Research &
Development, 38(1), 23-30.

Glaser, R., & Bassok, M. (1989). Learning theory and the study of
instruction. In M. R. Rosenwig & L. W. Porter (Eds.),

Annual Review of Psychology, (Vol. 40, pp. 631-666). Palo
Alto, CA: Annual Reviews, Inc.

Halff, H. M., & Spector, J. M. (1991). Designing an Advanced
Instructional Design Advisor: Possibilities for
Automation (Volume 3 of 6) (AL-TP-1991-0008). Brooks AFB,

TX: Technical Training Research Division, Armstrong
Laboratory, Human Resources Directorate.

Hollan, J. D., Hutchins, E. L., & Weltzman, L. (1984). STEAMER:
An interactive inspectable simulation-based training
system. The AI Magazine, 5(2), 15-27.

99

Hunt, R. M., & Rouse, W. B. (1984). A fuzzy rule-based model of

human problem solving. IEEE Transactions on_ Systems, Man,
and Cybernetics, SMC-14, 112-120.

Johnson (1988). Developing expert systems knowledge bases in
technical training environments. In J. Psotaka, L. D.
Massey, & S. A. Mutter (Eds.), Intelligent tutoring

systems: lLessons learned (pp 85-111). Hillsdale, NJ:
Erlbaum.

Jones, M. K., Li, 2., & Merrill, M. D. (1990a). Knowledge

representation for ID,: Part 1. Logan, UT: Utah State
University, Department of Instructional Technology.

Jones, M. K. Li, Z. & Merrill, M. D. (1990b). Knowledge

representation for ID?: Part 2. Logan, UT: Utah State
University, Department of Instructional Technology.

Karat, J. (1983). A model of problem solving with incomplete
constraint knowledge. Cognitive Psycholoqy, 14, 538-559.

Kieras, D. E. (1982). A model of reader strategy for abstracting
main ideas from simple technical prose. Text, 2, 47-82.

Kieras, D. E. (1988a). Towards a practical GOMS model methodology
for user interface design. In M. Helander (Ed.), Handbook

of human-computer interaction (pp. 135-157). North
Holland: Elsevier.

Kieras, D. E. (1988b). What mental model should be taught:
Choosing instructional content for complex engineered
systems. In J. Psotaka, L. D. Massey, & S. A. Mutter

(Eds.), Intelligent tutoring systems: Lessons learned (pp
85-111). Hillsdale, NJ: Erlbaum.

Kieras, D. E. (1990). The role of cognitive simulation models in
the development of advanced training and testing systems.
In N. Frederiksen, R. Glaser, A. Lesgold, & M. Shafto

(Eds.), Diagnostic monitoring of skill knowledge
acquisition (pp. 51-74). Hillsdale, NJ: Erlbaum.

Kieras, D. E., & Bovair, S. (1984). The role of a mental model in
learning to operate a device. Cognitive Science, 8,
255-273.

Kieras, D. E., & Bovair, S. (1986). The acquisition of procedures
from text: A production-system analysis of transfer of

training. Journal of Memory and Langquage, 25, 507-524.

100

Kieras, D. E., & Polson, P. G. (1985). An approach to the formal
analysis of user complexity. International Journal of
Man-Machine Studies, 22, 365-394.

Kintsch, E., Tennyson, R. D., Gagné, R. M., & Muraida, D. J.

(1991) . Designing an Advanced Instructional Design

Advisor: Principles of Instructional Design (Volume 2
of 6) (AL-TP-1991-0017). Brooks AFB, TX: Technical

Training Research Division, Armstrong Laboratory, Human
Resources Directorate.

Kintsch, W. (1988). The role of knowledge in discourse
comprehension: A construction-integrations model.

Psychological Review, 95, 163-182.

FKosslyn, S. M. (1980). Image and mind. Cambridge, M”: Harvard
University Press.

Lee, A. (1989). Timing of feedback in tutoring systems.
(Technical Report No. 89-10), Boulder: University of

Colorado at Boulder, Institute of Cognitive Science.

Li, 2., & Merrill, D. M. (1990). Transaction shells: A new

approach to courseware authoring. Logan, UT: Department of
Instructional Technology, Utah State University.

Nathan, M., Kintsch, W., & Lewis, C. (1988). Tutoring algebra
word problems (Tech Report No. 88-12), University of
Colorado at Boulder, Institute of Cognitive Science.

Newell, A., & Simon, H. A. (1972). Human problem solving.
Englewood Cliffs, NJ: Prentice-Hall.

Olson, J. R., & Olson, G. M. (1990). The growth of cognitive
modeling in human-computer interaction since GOMS.

Human-Computer Interaction, 5(2&3), 221-265.

Palincsar, A. S., & Brown, A. L. (1984). Reciprocal teaching of
comprehension fostering and comprehension monitoring
activities. Cognition & Instruction, 1, 117-175.

Polson, M. C. (in press). Cognitive theory as a basis for
instruction. In M. Spector, M. C. Polson, & D. Muraida

(Eds.), Automating instructional design: Concepts and
issues. Englewood Cliffs, NJ: Educational Technology.

Polson, P. G. (1987). A quantitative theory of human-computer
interaction. In J. M. Carroll (Ed.), Interfacing thought:
Cognitive aspects of human-computer interaction.
Cambridge: Bradford Books/MIT Press.

101

Polson, P. G., & Kieras, D. E. (1985). A gquantitative model of

the learning and performance of text editing knowledge.
San Francisco: ACM.

Polson, P. G., Muncher, E., & Engelbeck, G. (1986). A test of a
common elements theory of transfer. In M. Mantei & P.
Orbeton (Eds.), Proceedings CHI 86 Human Factors in
Computer Systems (pp. 78-83). New York: Association for
Computing Machinery.

Polson, M. C., & Richardson, J. J. (Eds.). (1988). Foundations of
intelligent tutoring systems. Hillsdale, NJ: Erlbaum.

Polson, M. C., Tennyson, R. D., & Spector, J. M. (1991).

Designing an Advanced Instructional Design Advisor:

Cognitive Science Foundations (Volume 1 of 6) (AL-TP-1991-
0007). Brooks AFB, TX: Technical Training Research

Division, Armstrong Laboratory, Human Resources
Directorate.

Psotaka, J., Massey, L. D,. & Mutter, S. A (Eds.). (1988).

Intelligent tutoring systems: Lessons learned. Hillsdale,
NJ: Erlbaum.

Regian, J. W., & Schneider, W. (1990). Assessment procedures for
predicting and optimizing skill acquisition after
extensive practice. In N. Frederiksen, R. Glaser, A.
Lesgold, & M. Shafto (Eds.), Diagnostic monitoring of

skill knowledge acgquisition (pp. 297-324). Hillsdale, NJ:
Erlbaum.

Reiser, B., Kimberg, D. Y., Lovett, M. C., & Ranney, M. (1989).

Knowledge representation and explanation in GIL, an

intelligent tutor for programming (Tech Report No. 37),
Princeton: Princeton University Cognitive Science

Laboratory.

Scardemalia, M. E., Bereiter, C., McLean, R. S., Swallow, J., &
Woodruff, E. (1989). Computer-supported intentional

learning environments. Journal of Educational Computing
Research, 5, 51-68.

Schmalhofer, F., Kuehn, 0., Messamer, P., & Charron, R. (1989).
An experimental evaluation of different amounts of
receptive and exploratory learning in a tutoring system.

Behavioral Research Methods, Instruments, and Computers,
22(2), 179-183.

Schneider, W. (1985). Training high-performance skills: Fallacies
and guidelines. Human Factors, 27(3), 285-300.

102

Schneider, W., & Detweiler, M. (1988). The role of practice in
dual-task performance: Toward workload modeling in a
connectionist/control architecture. Human Factors, 30(5),
539-566.

Simon, H. A. (1975). The functional equivalence of problem
solving skills. Cognitive Psychology, 7, 268-288.

Singley, M. K., & Anderson, J. R. (1989). The transfer of
cognitive skill. Cambridge, MA: Harvard University Press.

Sleeman, D., & Brown, J. S. (Eds.). (1982). Intelligent tutoring
systems. New York: Academic Press.

Spector, J. M. (1990). Designing and Developing an Advanced
Instructional Design Advisor (AFHRL-TP-90-52) . Brooks AFB,
TX: Technical Training Research Division, Armstrong
Laboratory, Human Resources Directorate.

Thorndike, E. L. (1914). Psycholoqy of learning. New York:
Teachers College.

Thorndike, E. L., & Woodward, R. S. (1901). The influence of
improvement in one mental function upon the efficiency of

other functions. Psychological Review, 8 ,247-261.

Towne, D. M. (1986). The generalized maintenance trainer:
Evolution and revolution. In W. B. Rouse (E4.), Advances
in man-machine systems research (Vol 3). Greenwich, CT:
JAT Press.

Towne, D. M., Johnson, M. C., & Corwin, W. H. (1983). A
erformance-based technigue for assessing equipment
maintainability (Tech. Report 102). Los Angeles, CA:
University of Southern California, Behavioral Technology
Laboratories.

Towne, D. M., & Munro, A. (1988). The intelligent maintenance
training system. In J. Psotka, L. D. Massey, & S. A.
Mutter (Eds.), Intelligent tutoring systems: Lessons
learned. (pp. 479-~530) Hilldsale, NJ: Erlbaum.

Towne, D. M., Munro, A., Pizzini, Q. A., Surmon, D. S., Coller,
L. D., & Wogulis, J. L. (1990). Model-building tools for

simulation-based .raining. Interactive Learning
Environments, 1, 33-50.

U. S. Air Force (1989a), USAF Series T-38A and AT-38B Flight

Manual (T. O. 1T-38A-1, Change 2).

103

U. S. Air Force (1989b). USAF Series T-38A Aircraft
Organizational Maintenance: Engine Conditioning Technical
Manual (T. O. 1T-38A-2-6-2, Change 35).

U. S. Air Force (1990). USAF Series T-38A Aircraft Organizational
Maintenance: Electrical Systems Technical Manual (T. O.
1T-38A-2-7, Change 36).

van Dijk, T. A., & Kintsch, W. (1983). Strategies of discourse

comprehension. New York: Academic Press.

Wenger, E. (1987). Artificial intelligence and tutoring systems:
Computational and cognitive approaches to communication of
lanquage. Los Altos, CA: Morgan Kaufmann.

Winograd, T. (1975). Frame representation and the declaratjive
procedural controversy. In D. Bobrow & A. Collins (Eds.),

Representation and understanding, New York: Academic

Press.

104

Appendix
T38 Engine Troubleshooting Procedures - Analyst: David Kieras, U. Michigan
Notes

Notation

o Elementary domain specific operators of airplane controls indicated
with*, complex domain specific operators are in {brackets}, otherwise
are

0 Steps or Method inferred by analyst are indicated with prefix ?

o For reference, original procedure numbers shown in [brackets] for
each Method or step

© Notation is based on Kieras (1990) A guide to GOMS task analysis,
made somewhat more compact

Note especially the domaian-specific operators and the list of Goals for
which there are no metbo’s provided in the procedures
o The user will have to learn how to do these from some other source

Method structure ova:vriew
o Top level Method corresponds to one of the "Trouble" headings - "No
Start”
Terminates when a second level Method returns that a problem was
found
o Second level Methods corresponds to the "Probable Cause" headings
o Third level are the step in the procedure, but only roughly, due to
the haphazard segmentation of steps in the procedures. Original
steps numbers are shown for reference

Analyst decisions
o Decisions on when trouble shooting is done need to be spelled out
o When steps subordinated, or grouped by mode, I*ve shown them
hierarchialized

Comments and questions on content of procedures
O Other questions and comments listed in italics in the methods
o While troubleshooting steps are listed in order of probable cause,
Clearly are not lowest cost
e.g. listed order has you attempting to start engine separate
times
e.g. why not do all cockpit checks at once:
check all breakers
static inverter test with fuel gage
check that starter can motor engine adequately, etc.
o Procedure seems to apply only to right engine start - what if left
won‘t start?
Static inverter shouldn’'t be involved
o Why is there no test mentioned of the ignition inverter - part of the
engine?
O0 Step to step flow of control is usually not explicit - no go to step
x statements
o Top level is ambiguous about whether a symptom is observed or is to
be looked for
e.g. low fuel flow
o0 Procedures do not take into account that observations would be made
in earlier steps that are not explicitly checked until later
e.g. if starter fails to produce 14% rpm
e.g. if engine is seized and doesn’'t rotate
o Some procedures seem to be dangerous - e.g. looking up tailpipe or
check for fuel mist at tailpipe
Have some steps been left out?

105

T38 Engine Troubleshooting Procedures - Analyst: David Kieras, U. Michigan
Method summary

Methods defined for these goals:
1. apply shorting stick to AB plug
2. check AB plug
3. check boost pump pressure at inlet manifold
4. check flow rate from bypass hose
5. check for altitude limitation problem
6. check for bad ignition
7. check for fuel flow problem
8. check for starting system defective
9. check fuel flow indicator
10. check fuel shutoff valve is open
11. check igniter plugs
12. check ignition with external power
13. check jet engine starter
14. check main plug
15. check overspeed governor for internal leakage
16. check starting circuit breakers
17. check static inverter electrical power
18. check throttle rigging
19. determine if fuel flow is low
20. diagnose engine no start symptom
21. obtain shorting stick
22. restore bypass hose
23. set up overspeed governor bypass hose for check
24. try start with boost pumps

Methods invoked for these goals:

1. air-motor engine

2. apply external electrical power to aircraft

3. apply shorting stick to AB plug

4. attach brass or steel wool to end of stick

S. check AB plug

6. check air duct from jet engine starter for blockage or kinking

7. check aircraft electrical system

8. check boost pump pressure at inlet manifold

9. check diverter value for proper positioning during start cycle

10. check engine drain lines for excessively draining component

11. check engine for freedom of rotation

12. check engine starting air inlet duct and crossover duct check valves
for freedom of operation and proper installation

13. check flow rate from bypass hose

14. check for altitude limitation problem

15. check for bad ignition

16. check for fuel flow problem

17. check for power at Pin N of engine ignition and accessories
disconnect plug

18. check for starting system defective

19. check fuel flow indicator

20. check fuel mist discharge

21. check fuel shutoff valve is open

22. check fuel system circuit breakers

23. check igniter plugs

24. check ignition time-delay relay for 30+/- 3 sec duration

25. check ignition with external power

26. check jet engine starter

27. check main plug

28. check overspeed governor for internal leakage

29. check start circuit breakers

106

T38 Engine Troubleshooting Procedures - Analyst: David Kieras, U. Michigan

30. check static inverter

31. check static inverter electrical power

32. check throttle rigging

33. determine if fuel flow is low

34. get cap

35. get graduated container

36. get stick and brass or steel wool

37. measure pressure

38. measure quantity of fuel discharged from hose in 1 minute
39. obtain Handbook limitations

40, obtain operating information

41, obtain shorting stick

42. remove engine from aircraft

43. restore bypass hose

44. set up overspeed governor bypass hose for check
45, start engine

46. stop air-motoring

47. try start with boost pumps

48. turn on boost pumps

Methods invoked from more than one method for these goals:
1. air-motor engine
2. start engine
3. apply external electrical power to aircraft
4. check igniter plugs
5. check throttle rigging
6. remove engine from aircraft

Domain-specific elementary operators
1. *Actuate fuel/oxygen test switch
2. *Observe fuel quantity indicator
3. *Locate ENGINE IGNITION circuit breaker
4. Decide: If *ENGINE IGNITION circuit breaker not engaged
5. *Locate R AUTOSYN INST circuit breaker
6. Decide: If not *R AUTOSYN INST circuit breaker not engaged
7. *Locate IGNITION INVERTER circuit breaker
8. Decide: If *IGNITION INVERTER circuit breaker not engaged
9. Decide: If *engine started
10. *Locate fuel flow indicator
11. *Advance throttle past IDLE
12. Decide: If *fuel flow increases or *engine lights

Domain-gspecific complex operators
1. ({Look for spark at AB plug}
2. ({Listen for sparks from main plug)}
3. ({Place metal on stick over end of plug}
4. Decide: If (fuel quantity indicator shows correct value)
S. Decide: If {altitude problem}, N
6. Decide: If {mist not present}
7. Decide: I1If {fuel flow high enough}
8. Decide: If (pressure} >= 14 psig
9. Decide: If {all fuel is purged from engine}
10. {Disconnect overspeed governor bypass hose from fuel inlet manifold)
11. (Put cap on fuel inlet manifold fitting)
12. {Connect hose to fitting}
13. Decide: If {aircraft operated outside of limitations)}

107

T38 Engine Troubleshooting Procedures - Analyst: David Kieras, U. Michigan

for which there are no methods provided in the procedures
air-motor engine

apply external electrical power to aircraft

attach brass or steel wool to end of stick

check boost pump pressure at inlet manifold ;

check engine drain lines for excessively draining component
check engine for freedom of rotation

check engine starting air inlet duct and crossover duct check valves
for freedom of operation and proper installation

check for power at Pin N of engine ignition and accessories
disconnect plug

check fuel mist discharge

check fuel system circuit breakers

check ignition time-delay relay for 30+/- 3 sec duration
check static inverter

get cap

get graduated container

get stick and brass or steel wool

measure pressure

measure quantity of fuel discharged from hose in 1 minute
obtain Handbook limitations

obtain operating information

remove engine from aircraft

start engine

stop air-motoring

turn on boost pumps

108

T38 Engine Troubleshooting Procedures ~ Analyst: David Kieras, U. Michigan
Method Listing

(6-5) Method for Goal: diagnose engine no start symptom

1. ([6-5.1) Accomplish Goal: check for bad ignition

2. Decide: If Recall that problem is bad ignition, and Return with goal
accomplished

3. [6-5.2] Accomplish Goal: check for fuel flow problem

4. Decide: If Recall that problem is low fuel flow, and Return with
goal accomplished

5. [6-5.3) Accomplish Goal: check for starting system defective

6. Decide: If Recall that problem is bad starting system, and Return
with goal accomplished

7. [(6-5.4) Accomplish Goal: check for altitude limitation problem

8. Decide: If Recall that problem is altitude limitation, and Return
with goal accomplished

9. Retain that problem was not found, and Return with goal accomplished

[6-5.1]) Method for Goal: check for bad ignition
returns that problem is/is not bad ignition
1. [1] Accomplish Goal: check igniter plugs
Method provided in line
2. Decide: If Recall that plugs are firing,
Retain that problem is not bad ignition and Return with goal
accomplished
3. (2) Accomplish Goal: check static inverter electrical power
flow of control not very clear here
Method provided in-line
4. [3) Decide: If Recall that inverter is not producing electrical
power then
Accomplish Goal: check start circuit breakers
5. (3) Decide: If Recall that starting circuit breakers are ok, and
Recall that static inverter is not producing electrical power then
Accomplish Goal: check static inverter
6. Decide: If Recall that static inverter is bad, then
Retain that problem is bad ignition and Return with goal
accomplished
7. [4--6) Decide: If Recall that starting circuit breakers are ok, and
rationale or flow of control not at all clear here - how does
applying external power change the situation?
Recall that static inverter is producing electrical power then
Accomplish Goal: check ignition with external power
8. Decide: If Recall that problem in aircraft electrical system, then
Retain that problem is bad ignition
9. Decide If Recall that problem in engine, then
Retain that problem is bad ignition,
Accomplish Goal: remove engine from aircraft,
and Return with goal accomplished
10. Retain that problem is not bad ignition, and Return with goal
accomplished

[6-5.1.1]) Method for Goal: check igniter plugs
1. Accomplish Goal: check AB plug
"AB" apparently means afterburner
2. Accomplish Goal: check main plug
3. Decide: If Recall that main plug is firing and Recall that AB plug
is firing,
Retain that plugs are firing and Return with goal accomplished

109

T38 Engine Troubleshooting Procedures - Analyst: David Kieras, U. Michigan

(6-5.1.1] Method for Goal: check AB plug
1. ?Watch up tailpipe
2. ?Tell assistant try to start engine
3. ?{Look for spark at AB plug)
4. Count sparks
5. Decide if 3 per 2 sec, Retain that AB plug is firing ;
Else Retain that AB plug is not firing
6. Return with goal accomplished

[6-5.1.1) Method for Goal: check main plug
1. ?Accomplish Goal: obtain shorting stick
2. ?Accomplish Goal: apply shorting stick to AB plug
3. ?Listen at tailpipe
4. ?Tell assistant to try to start engine
5. ({Listen for sparks from main plug)}
6. Count sparks
7. Decide: If count 3 per 2 sec, Retain that main plug is firing
8. Return with goal accomplished

(6-5.1.1] ?Method for Goal: obtain shorting stick
1. Decide: If shorting stick already available, get & Return with goal
accomplished
2. Accomplish Goal: get stick and brass or steel wool
3. Accomplish Goal: attach brass or steel wool to end of stick
4. Return with goal accomplisheD

[6-5.1.1) ?Method for Goal: apply shorting stick to AB plug
1. stand at tailpipe
2. Hold stick in hand
3. Reach into engine
4. ({Place metal on stick over end of plug}
S. Return with goal accomplished

[6-5.1.2] Method for Goal: check static inverter electrical power

1. *Actuate fuel/oxygen test switch
2. *Observe fuel quantity indicator
3. Decide: If {fuel quantity indicator shows correct value)}, then
Retain that static inverter is producing electrical power and
Return with goal accomplished
Else, Retain that static inverter is not producing electrical
power and Return with goal accomplished

[6-5.1.3] ?Method for Goal: check starting circuit breakers
1. *Locate ENGINE IGNITION circuit breaker
2. Decide: If *ENGINE IGNITION circuit breaker not engaged, then Retain
that ENGINE IGNITION circuit breaker was not engaged
Else Retain that ENGINE IGNITION circuit breaker was engaged
3. *Locate R AUTOSYN INST circuit breaker
4. Decide: If not *R AUTOSYN INST circuit breaker not engaged, then
Retain that R AUTOSYN INST circuit breaker was not engaged
Else Retain that R AUTOSYN INST circuit breaker was engaged
S. *Locate IGNITION INVERTER circuit breaker
6. Decide: If *IGNITION INVERTER circuit breaker not engaged, then
Retain that IGNITION INVERTER circuit breaker was not engaged
Else Retain that IGNITION INVERTER circuit breaker was engaged
7. Decide: If no Recall that a circuit breaker was not engaged, then
Retain that starting circuit breakers are ok
8. Return with goal accomplished

110

T38 Engine Troubleshooting Procedures - Analyst: David Kieras, U. Michigan

[6-5.1.4] Method for Goal: check ignition with external power

2.
3.

4.
5.

6.

[4]) Accomplish Goal: apply external electrical power to aircraft
[4) Accomplish Goal: check igniter plugs
[5) Accomplish Goal: check for power at Pin N of engine ignition and
accessories disconnect plug :
(6) Decide: If Recall that power not at Pin N, then
Accomplish Goal: check aircraft electrical system
[7] Decide: If Recall that power present at Pin N, then
Retain that problem is in engine
keturn with goal accomplished

{6-5.2] Method for Goal: check for fuel flow problem

8.
9.

10.
11.
12.
13.
14.
1s5.
16.
17.
18.

returns that problem is/is not low fuel flow

QUESTION: What is the correct flow of control here? First step seems
to be a symptom-obtaining step, while step [3] can fix the problem.
Flow of control as shown here is just a guess - could easily be
incorrect!

[1] Accomplish Goal: determine if fuel flow is low

Decide: If Recall that fuel flow is not low, then Retain that
problem is not low fuel flow and Return with goal accomplished

[2) Accomplish Goal: check throttle rigging

Decide: If Recall that throttle rigging was bad, Retain that problem
is low fuel flow and Return with goal accomplished

(3] Accomplish Goal: try start with boost pumps

Decide: If *engine started, then

Retain that problem was air in fuel system

Retain that problem is low fuel flow and

Retain that problem is now corrected

Return with goal accomplished
Decide: If Recall that problem is now corrected, and Return with
goal accomplished
(4) Accomplish Goal: check fuel system circuit breakers
Decide: If Recall that breakers were not ok, Retain that problem is
low fuel flow and Return with goal accomplished
[S] Decide: If {altitude problem},

Accomplish Goal: check boost pump pressure at inlet manifold
Decide: if boost pump pressure is bad, Retain that problem is low
fuel flow, and Return with goal accomplished
[6] Accomplish Goal: check fuel shutoff valve is open
Decide: If Recall that vaive is closed,

Retain that problem is low fuel flow and Return with goal

accomplished
(7] Accomplish Goal: check engine drain lines for excessively
draining component
Decide: If Recall that component draining excessively, then Retain
that problem is low fuel flow and Return with goal accomplished
(8] Accomplish Goal: check overspeed governor for internal leakage

Method provided inline
Decide: If Recall that overspeed governor is bad, then Retain that
problem is low fuel flow and Return with goal accomplished
[9]) Retain that engine is bad,

Retain that problem is low fuel flow,

Accomplish Goal: remove engine from aircraft,

and Return with goal accomplished

111

T38 Engine Troubleshooting Procedures - Analyst: David Kieras, U. Michigan

[6~5.2.1) Method for Goal: determine if fuel flow is low

2.
3.
4.
5.

Accomplish Goal: air-motor engine
Method in section II
Accomplish Goal: check fuel mist discharge
Decide: If {mist not present) Retain that fuel flow is low
Accomplish Goal: check fuel flow indicator
Return with goal accomplished

[6-5.2.1] Method for Goal: check fuel flow indicator

1.
2.

3.

*L,ocate fuel flow indicator

Decide: If {fuel flow high enough} then Retain that fuel flow is ok
Else Retain that fuel flow is low

Return with goal accomplished

[6-5.2.2) Method for Goal: check throttle rigging

1.
2.

3.

*Advance throttle past IDLE

Decide: If *fuel flow increases or *engine lights , then
Accomplish Goal: check throttle rigging

Return with goal accomplished

{6-5.2.3) Method for Goal: try start with boost pumps

1.
2.
3.

Accomplish Goal: apply external electrical power to aircraft
Accomplish Goal: turn on boost pumps
Accomplish Goal: start engine

[{6-5.2.5] ?Method for Goal: check boost pump pressure at inlet manifold

1.
2.
3.
4.

5.

*turn on boost pump
*open throttle
Accomplish Goal: measure pressure
Decide: If {pressure) >= 14 psig, Retain that boost pump pressure is
ok
else Retain that boost pump pressure is bad
Return with goal accomplished

[{6-5.2.6] Method for Goal: check fuel shutoff valve is open

10
2.
3.

*Locate fuel shutoff valve
*Retain state of valve
Return with goal accomplished

[6-5.2.8) Method for Goal: check overspeed governor for internal leakage

2.
3.
4.

S.
6.

{a) Accomplish Goal: set up overspeed governor bypass hose for check
[b} Accomplish Goal: check flow rate from bypass hose
{c] *Move throttle to off
Decide: If {all fuel is purged from engine}, then
QUESTION how do you tell that all fuel is purged from engine?
Accomplish Goal: stop air-motoring
Else wait
(d] Accomplish Goal: restore bypass hose
Return with goal accomplished

(6-5.2.8.a] Method for Goal: set up overspeed governor bypass hose for

check

1.
2.
3‘
4q.
5.
6.

Accomplish Goal: get graduated container

Accomplish Goal: get cap

{Disconnect overspeed governor bypass hose from fuel inlet manifold}
Run hose into a graduated container

{Put cap on fuel inlet manifold fitting)

Return with goal accomplished

112

T38 Engine Troubleshooting Procedures - Analyst: David Kieras, U. Michigan

[6-5.2.8.b) Method for Goal: check flow rate from bypass hose
1. Accomplish Goal: air-motor engine at 14% rpm
QUESTION: 14% is given as normal maximum rate - why made explicit
here?
2. *advance throttle to IDLE
3. Accomplish Goal: measure gquantity of fuel discharged from hose in
minute
4. Decide: If rate > 26 fl oz min, 80 phr, then Retain that rate is too
high and Retain that overspeed governor is bad
Else overspeed governor is ok
5. Return with goal accomplished

[{6-5.2.8.d] Method for Goal: restore bypass hose
1. *Remove cap from fitting
2. {Connect hose to fitting}
3. Return with goal accomplished

[{6-5.3) Method for Goal: check for starting system defective
returns that problem is/is not bad starting system

1. {1) Accomplish Goal: check jet engine starter

2. Decide: If Recall that jet engine starter is bad, Retain that
problem is bad starting system, and Return with goal accomplished

3. [2) Accomplish Goal: check ignition time-delay relay for 30+/- 3 sec
duration

4. Decide: If Recall that ignition time-delay relay is bad, Retain that
problem is bad starting system, and Return with goal accomplished

5. (3] Accomplish Goal: check diverter value for proper positioning
during start cycle

6. Decide: If Recall that diverter value is bad, Retain that problem is
bad starting system, and Return with goal accomplished

7. (4} Accomplish Goal: check air duct from jet engine starter for
blockage or kinking

Method not provided, but duct is a visible tube and so it should
not be domain-specific to tell if it is blocked or kinked.

8. Decide: If Recall that air duct is bad, Retain that problem is bad
starting system, and Return with goal accomplished

9. (5) Accomplish Goal: check engine starting air inlet duct and
crossover duct check valves for freedom of operation and proper
installation

How does this differ from step 3 above?

10. Decide: If Recall that engine starting air inlet duct and crossover
duct check valves is bad, Retain that problem is bad starting
system, and Return with goal accomplished

11. [6]) Accomplish Goal: check engine for freedom of rotation

12. Decide: If Recall that engine is bad, Retain that problem is bad
starting system, :

Accomplish Goal: remove engine from aircraft

13. Retain that problem is not bad starting system, and Return with goal

accomplished

[6-5.3.1] Method for Goal: check jet engine starter
QUESTION: these data may have already been obtained, but otherwise
seem to require that the starter be applied to a known good engine?
1. Accomplish Goal: start jet engine with starter
2. Decide: If produced 14% rpm within 15 sec
and continued to supply air for
how do you tell that it is continuing to supply air?
10 sec after lightoff or at 40% rpm

113

T38 Engine Troubleshooting Procedures - Analyst: David Kieras, U. Michigan

then Retain that starter is good
else Retain that starter is bad
3. Return with goal accomplished

[6-5.4] Method for Goal: check for altitude limitation problem

returns that problem is/is not altitude limitation

1. Accomplish Goal: obtain operating information

2. Accomplish Goal: obtain Handbook limitations

3. Decide: If {aircraft operated outside of limitations)}, Retain that
problem is altitude limitation, and Return with goal accomplished

4. Retain that problem is not an altitude limitation, and Return with
goal accomplished

114

